論文の概要: Fast readout of quantum dot spin qubits via Andreev spins
- arxiv url: http://arxiv.org/abs/2506.19762v1
- Date: Tue, 24 Jun 2025 16:22:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-25 19:48:23.72111
- Title: Fast readout of quantum dot spin qubits via Andreev spins
- Title(参考訳): アンドレフスピンによる量子ドットスピン量子ビットの高速読み出し
- Authors: Michèle Jakob, Katharina Laubscher, Patrick Del Vecchio, Anasua Chatterjee, Valla Fatemi, Stefano Bosco,
- Abstract要約: アンドレーフスピン量子ビットは超伝導量子ビットの大きな共振器結合によって実現される高速な測定スキームの恩恵を受けるが、量子ビット演算中にコヒーレンスを低下させる。
本稿では,量子ドットとアンドレーフスピン量子ビットの電気的結合に基づく高速かつ高忠実な測定プロトコルを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spin qubits in semiconducting quantum dots are currently limited by slow readout processes, which are orders of magnitude slower than gate operations. In contrast, Andreev spin qubits benefit from fast measurement schemes enabled by the large resonator couplings of superconducting qubits but suffer from reduced coherence during qubit operations. Here, we propose fast and high-fidelity measurement protocols based on an electrically-tunable coupling between quantum dot and Andreev spin qubits. In realistic devices, this coupling can be made sufficiently strong to enable high-fidelity readout well below microseconds, potentially enabling mid-circuit measurements. Crucially, the electrical tunability of our coupler permits to switch it off during idle periods, minimizing crosstalk and measurement back-action. Our approach is fully compatible with germanium-based devices and paves the way for scalable quantum computing architectures by leveraging the advantages of heterogeneous qubit implementations.
- Abstract(参考訳): 半導体量子ドットのスピン量子ビットは現在、ゲート演算よりも桁違い遅い遅い読み出しプロセスによって制限されている。
対照的に、アンドレーフスピンキュービットは超伝導キュービットの大きな共振器カップリングによって実現される高速な測定スキームの恩恵を受けるが、キュービット操作中にコヒーレンスを低下させる。
本稿では,量子ドットとアンドレーフスピン量子ビットの電気的結合に基づく高速かつ高忠実な測定プロトコルを提案する。
現実的な装置では、この結合は十分強くなり、マイクロ秒以下で高忠実な読み出しが可能となり、中間回路の測定が可能となる可能性がある。
重要なことは、私たちのカプラの電気的チューニング性によって、アイドル期間中にスイッチをオフにすることができ、クロストークを最小化し、バックアクションを測定することができる。
我々のアプローチはゲルマニウムベースのデバイスと完全に互換性があり、異種量子ビット実装の利点を生かしてスケーラブルな量子コンピューティングアーキテクチャの道を開く。
関連論文リスト
- A Superconducting Qubit-Resonator Quantum Processor with Effective All-to-All Connectivity [44.72199649564072]
このアーキテクチャは、高い接続性から恩恵を受けるアルゴリズムのテストベッドとして使用できる。
中心共振器は計算要素として利用できることを示す。
GHZ(Greenberger-Horne-Zeilinger)状態は6つの量子ビットすべてに対して真に複数の量子ビットが絡み合った状態であり、読み出しエラーを緩和するフィリティは0.86$である。
論文 参考訳(メタデータ) (2025-03-13T21:36:18Z) - Enhancing Dispersive Readout of Superconducting Qubits Through Dynamic
Control of the Dispersive Shift: Experiment and Theory [47.00474212574662]
超伝導量子ビットは、大帯域読み出し共振器に結合される。
我々は、100 ns 統合時間で 0.25,% の、最先端の2状態読み取りエラーを示す。
提案した結果により,新たなアルゴリズムやプロトコルの性能がさらに向上することが期待されている。
論文 参考訳(メタデータ) (2023-07-15T10:30:10Z) - An integrated microwave-to-optics interface for scalable quantum
computing [47.187609203210705]
シリコンフォトニックキャビティに結合した超伝導共振器を用いた集積トランスデューサの新しい設計法を提案する。
上記の条件をすべて同時に実現するためのユニークな性能とポテンシャルを実験的に実証する。
デバイスは50オーム伝送ラインに直接接続し、単一のチップ上で多数のトランスデューサに容易にスケールできる。
論文 参考訳(メタデータ) (2022-10-27T18:05:01Z) - Direct manipulation of a superconducting spin qubit strongly coupled to
a transmon qubit [2.6810058988728342]
超伝導スピン量子ビットは半導体量子ビットの代替として有望である。
我々は、静電気的に定義された量子ドットジョセフソン接合のスピン分割ダブルト基底状態を用いて異なる量子ビット部分空間を利用する。
我々はアンドレーフスピン量子ビットを超伝導トランスモン量子ビットに埋め込み、強いコヒーレント量子ビット結合を示す。
論文 参考訳(メタデータ) (2022-08-22T07:09:24Z) - Enhancing the Coherence of Superconducting Quantum Bits with Electric
Fields [62.997667081978825]
印加された直流電界を用いて、クォービット共鳴から外れた欠陥を調整することにより、クビットコヒーレンスを向上させることができることを示す。
また、超伝導量子プロセッサにおいて局所ゲート電極をどのように実装し、個々の量子ビットの同時コヒーレンス最適化を実現するかについても論じる。
論文 参考訳(メタデータ) (2022-08-02T16:18:30Z) - Resonant single-shot CNOT in remote double quantum dot spin qubits [0.0]
超伝導共振器の共振モードに分散結合した2つの非局所単一スピン量子ビット間のac駆動量子ゲートの枠組みを提案する。
既存の技術では、ゲートタイムが150 ns、フィリティが90%以上になると予想しています。
論文 参考訳(メタデータ) (2022-07-27T15:42:31Z) - Implementing two-qubit gates at the quantum speed limit [33.51056531486263]
実験では、2量子ゲートを可能な限り高速な速度で実証する。
我々は、機械学習にインスパイアされた最適制御法を用いて設計された実験ゲートを実装することにより、この量子速度制限を実現する。
提案手法では,非ネイティブな2ビットゲートの高速化が期待できる。
論文 参考訳(メタデータ) (2022-06-15T18:00:00Z) - Hole spin qubits in thin curved quantum wells [0.0]
Hole spin qubitsはスケーラブルな量子コンピュータのための最前線のプラットフォームである。
これまでで最も速いスピン量子ビットは、閉じ込め方向の長い量子ドットで定義される。
これらの系では、量子ビットの寿命は電荷ノイズによって強く制限される。
我々は、平面CMOS技術と互換性のある、異なるスケーラブルな量子ビット設計を提案する。
論文 参考訳(メタデータ) (2022-04-18T08:34:38Z) - Squeezed hole spin qubits in Ge quantum dots with ultrafast gates at low
power [0.0]
平面Geヘテロ構造におけるホールスピン量子ビットは、スケーラブルな量子コンピュータのための最前線のプラットフォームの一つである。
我々はこれらの相互作用を桁違いに拡張する最小限の設計修正を提案する。
我々のアプローチは、量子ドットを一方向に強く絞る非対称ポテンシャルに基づいている。
論文 参考訳(メタデータ) (2021-03-30T23:46:07Z) - Long-range connectivity in a superconducting quantum processor using a
ring resonator [0.0]
リング共振器を多経路結合素子とし,その周囲に均一に分布する量子ビットを用いた新しい超伝導アーキテクチャを提案する。
理論的には、量子ビット接続を解析し、各量子ビットが他の9つの量子ビットに接続可能な最大12個の量子ビットをサポートする装置で実験的に検証する。
論文 参考訳(メタデータ) (2020-12-17T09:34:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。