Alleviating User-Sensitive bias with Fair Generative Sequential Recommendation Model
- URL: http://arxiv.org/abs/2506.19777v2
- Date: Tue, 15 Jul 2025 14:55:37 GMT
- Title: Alleviating User-Sensitive bias with Fair Generative Sequential Recommendation Model
- Authors: Yang Liu, Feng Wu, Xuefang Zhu,
- Abstract summary: Diffusion model (DM) as a new generative model paradigm has achieved great success in recommendation systems.<n>This paper proposes a FairGENerative sequential Recommendation model based on DM, FairGENRec.
- Score: 37.544371176013435
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recommendation fairness has recently attracted much attention. In the real world, recommendation systems are driven by user behavior, and since users with the same sensitive feature (e.g., gender and age) tend to have the same patterns, recommendation models can easily capture the strong correlation preference of sensitive features and thus cause recommendation unfairness. Diffusion model (DM) as a new generative model paradigm has achieved great success in recommendation systems. DM's ability to model uncertainty and represent diversity, and its modeling mechanism has a high degree of adaptability with the real-world recommendation process with bias. Therefore, we use DM to effectively model the fairness of recommendation and enhance the diversity. This paper proposes a FairGENerative sequential Recommendation model based on DM, FairGENRec. In the training phase, we inject random noise into the original distribution under the guidance of the sensitive feature recognition model, and a sequential denoise model is designed for the reverse reconstruction of items. Simultaneously, recommendation fairness modeling is completed by injecting multi-interests representational information that eliminates the bias of sensitive user features into the generated results. In the inference phase, the model obtains the noise in the form of noise addition by using the history interactions which is followed by reverse iteration to reconstruct the target item representation. Finally, our extensive experiments on three datasets demonstrate the dual enhancement effect of FairGENRec on accuracy and fairness, while the statistical analysis of the cases visualizes the degree of improvement on the fairness of the recommendation.
Related papers
- Fake it till You Make it: Reward Modeling as Discriminative Prediction [49.31309674007382]
GAN-RM is an efficient reward modeling framework that eliminates manual preference annotation and explicit quality dimension engineering.<n>Our method trains the reward model through discrimination between a small set of representative, unpaired target samples.<n>Experiments demonstrate our GAN-RM's effectiveness across multiple key applications.
arXiv Detail & Related papers (2025-06-16T17:59:40Z) - A Novel Generative Model with Causality Constraint for Mitigating Biases in Recommender Systems [20.672668625179526]
Latent confounding bias can obscure the true causal relationship between user feedback and item exposure.<n>We propose a novel generative framework called Latent Causality Constraints for Debiasing representation learning in Recommender Systems.
arXiv Detail & Related papers (2025-05-22T14:09:39Z) - Flow Matching based Sequential Recommender Model [54.815225661065924]
This study introduces FMRec, a Flow Matching based model that employs a straight flow trajectory and a modified loss tailored for the recommendation task.<n>FMRec achieves an average improvement of 6.53% over state-of-the-art methods.
arXiv Detail & Related papers (2025-05-22T06:53:03Z) - Detecting Prefix Bias in LLM-based Reward Models [4.596249232904721]
We introduce novel methods to detect and evaluate prefix bias in reward models trained on preference datasets.<n>We leverage these metrics to reveal significant biases in preference models across racial and gender dimensions.<n>Our findings highlight the critical need for bias-aware dataset design and evaluation in developing fair and reliable reward models.
arXiv Detail & Related papers (2025-05-13T21:50:03Z) - Slow Thinking for Sequential Recommendation [88.46598279655575]
We present a novel slow thinking recommendation model, named STREAM-Rec.<n>Our approach is capable of analyzing historical user behavior, generating a multi-step, deliberative reasoning process, and delivering personalized recommendations.<n>In particular, we focus on two key challenges: (1) identifying the suitable reasoning patterns in recommender systems, and (2) exploring how to effectively stimulate the reasoning capabilities of traditional recommenders.
arXiv Detail & Related papers (2025-04-13T15:53:30Z) - How Fair is Your Diffusion Recommender Model? [17.78188684065516]
Diffusion-based recommender systems have recently proven to outperform traditional generative recommendation approaches.
Machine learning literature has raised several concerns regarding the possibility that diffusion models may inadvertently carry information bias and lead to unfair outcomes.
We conduct one of the first fairness investigations in the literature on DiffRec, a pioneer approach in diffusion-based recommendation.
arXiv Detail & Related papers (2024-09-06T15:17:40Z) - Debiased Model-based Interactive Recommendation [22.007617148466807]
We develop a model called textbfidentifiable textbfDebiased textbfModel-based textbfInteractive textbfRecommendation (textbfiDMIR in short)
For the first drawback, we devise a debiased causal world model based on the causal mechanism of the time-varying recommendation generation process with identification guarantees.
For the second drawback, we devise a debiased contrastive policy, which coincides with the debiased contrastive learning and avoids sampling bias
arXiv Detail & Related papers (2024-02-24T14:10:04Z) - Secrets of RLHF in Large Language Models Part II: Reward Modeling [134.97964938009588]
We introduce a series of novel methods to mitigate the influence of incorrect and ambiguous preferences in the dataset.
We also introduce contrastive learning to enhance the ability of reward models to distinguish between chosen and rejected responses.
arXiv Detail & Related papers (2024-01-11T17:56:59Z) - A Relational Model for One-Shot Classification [80.77724423309184]
We show that a deep learning model with built-in inductive bias can bring benefits to sample-efficient learning, without relying on extensive data augmentation.
The proposed one-shot classification model performs relational matching of a pair of inputs in the form of local and pairwise attention.
arXiv Detail & Related papers (2021-11-08T07:53:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.