Diffusion-based Task-oriented Semantic Communications with Model Inversion Attack
- URL: http://arxiv.org/abs/2506.19886v1
- Date: Tue, 24 Jun 2025 05:21:27 GMT
- Title: Diffusion-based Task-oriented Semantic Communications with Model Inversion Attack
- Authors: Xuesong Wang, Mo Li, Xingyan Shi, Zhaoqian Liu, Shenghao Yang,
- Abstract summary: Task-oriented semantic communication is a promising neural network-based system design for 6G networks.<n>We propose a diffusion-based semantic communication framework, named DiffSem, to optimize semantic information reconstruction.<n>Our results show that DiffSem improves the classification accuracy by 10.03%, and maintain stable performance under dynamic channels.
- Score: 6.115539523178243
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Semantic communication has emerged as a promising neural network-based system design for 6G networks. Task-oriented semantic communication is a novel paradigm whose core goal is to efficiently complete specific tasks by transmitting semantic information, optimizing communication efficiency and task performance. The key challenge lies in preserving privacy while maintaining task accuracy, as this scenario is susceptible to model inversion attacks. In such attacks, adversaries can restore or even reconstruct input data by analyzing and processing model outputs, owing to the neural network-based nature of the systems. In addition, traditional systems use image quality indicators (such as PSNR or SSIM) to assess attack severity, which may be inadequate for task-oriented semantic communication, since visual differences do not necessarily ensure semantic divergence. In this paper, we propose a diffusion-based semantic communication framework, named DiffSem, that optimizes semantic information reconstruction through a diffusion mechanism with self-referential label embedding to significantly improve task performance. Our model also compensates channel noise and adopt semantic information distortion to ensure the robustness of the system in various signal-to-noise ratio environments. To evaluate the attacker's effectiveness, we propose a new metric that better quantifies the semantic fidelity of estimations from the adversary. Experimental results based on this criterion show that on the MNIST dataset, DiffSem improves the classification accuracy by 10.03%, and maintain stable performance under dynamic channels. Our results further demonstrate that significant deviation exists between traditional image quality indicators and the leakage of task-relevant semantic information.
Related papers
- Distributionally Robust Wireless Semantic Communication with Large AI Models [120.29419104482793]
6G wireless systems are expected to support massive volumes of data with ultra-low latency.<n> conventional bit-level transmission strategies cannot support the efficiency and adaptability required by modern, data-intensive applications.<n>The concept of semantic communication (SemCom) addresses this limitation by focusing on transmitting task-relevant semantic information instead of raw data.
arXiv Detail & Related papers (2025-05-28T04:03:57Z) - Task-Oriented Low-Label Semantic Communication With Self-Supervised Learning [67.06363342414397]
Task-oriented semantic communication enhances transmission efficiency by conveying semantic information rather than exact messages.<n>Deep learning (DL)-based semantic communication can effectively cultivate the essential semantic knowledge for semantic extraction, transmission, and interpretation.<n>We propose a self-supervised learning-based semantic communication framework (SLSCom) to enhance task inference performance.
arXiv Detail & Related papers (2025-05-26T13:06:18Z) - Task-Adaptive Semantic Communications with Controllable Diffusion-based Data Regeneration [45.55410059471241]
Next-generation networking shifts bit-wise data delivery to conveying semantic meanings for bandwidth efficiency.<n>This work presents a novel task-adaptive semantic communication framework based on diffusion models.<n>Test results demonstrate the efficacy of the proposed method in adaptively preserving task-relevant information for semantic communications.
arXiv Detail & Related papers (2025-05-12T18:23:53Z) - Task-Oriented Semantic Communication in Large Multimodal Models-based Vehicle Networks [55.32199894495722]
We investigate an LMM-based vehicle AI assistant using a Large Language and Vision Assistant (LLaVA)<n>To reduce computational demands and shorten response time, we optimize LLaVA's image slicing to selectively focus on areas of utmost interest to users.<n>We construct a Visual Question Answering (VQA) dataset for traffic scenarios to evaluate effectiveness.
arXiv Detail & Related papers (2025-05-05T07:18:47Z) - Latent Diffusion Model-Enabled Low-Latency Semantic Communication in the Presence of Semantic Ambiguities and Wireless Channel Noises [18.539501941328393]
This paper develops a latent diffusion model-enabled SemCom system to handle outliers in source data.<n>A lightweight single-layer latent space transformation adapter completes one-shot learning at the transmitter.<n>An end-to-end consistency distillation strategy is used to distill the diffusion models trained in latent space.
arXiv Detail & Related papers (2024-06-09T23:39:31Z) - Tackling Distribution Shifts in Task-Oriented Communication with Information Bottleneck [28.661084093544684]
We propose a novel approach based on the information bottleneck (IB) principle and invariant risk minimization (IRM) framework.
The proposed method aims to extract compact and informative features that possess high capability for effective domain-shift generalization.
We show that the proposed scheme outperforms state-of-the-art approaches and achieves a better rate-distortion tradeoff.
arXiv Detail & Related papers (2024-05-15T17:07:55Z) - Agent-driven Generative Semantic Communication with Cross-Modality and Prediction [57.335922373309074]
We propose a novel agent-driven generative semantic communication framework based on reinforcement learning.
In this work, we develop an agent-assisted semantic encoder with cross-modality capability, which can track the semantic changes, channel condition, to perform adaptive semantic extraction and sampling.
The effectiveness of the designed models has been verified using the UA-DETRAC dataset, demonstrating the performance gains of the overall A-GSC framework.
arXiv Detail & Related papers (2024-04-10T13:24:27Z) - Reasoning with the Theory of Mind for Pragmatic Semantic Communication [62.87895431431273]
A pragmatic semantic communication framework is proposed in this paper.
It enables effective goal-oriented information sharing between two-intelligent agents.
Numerical evaluations demonstrate the framework's ability to achieve efficient communication with a reduced amount of bits.
arXiv Detail & Related papers (2023-11-30T03:36:19Z) - Neuro-Symbolic Artificial Intelligence (AI) for Intent based Semantic
Communication [85.06664206117088]
6G networks must consider semantics and effectiveness (at end-user) of the data transmission.
NeSy AI is proposed as a pillar for learning causal structure behind the observed data.
GFlowNet is leveraged for the first time in a wireless system to learn the probabilistic structure which generates the data.
arXiv Detail & Related papers (2022-05-22T07:11:57Z) - Reinforcement Learning-powered Semantic Communication via Semantic
Similarity [13.569045590522316]
We introduce a new semantic communication mechanism, whose key idea is to preserve the semantic information instead of strictly securing the bit-level precision.
We show that the commonly used bit-level metrics are vulnerable of catching important semantic meaning and structures.
We put forward a reinforcement learning (RL)-based solution which allows us to simultaneously optimize any user-defined semantic measurement.
arXiv Detail & Related papers (2021-08-27T05:21:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.