Distributionally Robust Wireless Semantic Communication with Large AI Models
- URL: http://arxiv.org/abs/2506.03167v1
- Date: Wed, 28 May 2025 04:03:57 GMT
- Title: Distributionally Robust Wireless Semantic Communication with Large AI Models
- Authors: Long Tan Le, Senura Hansaja Wanasekara, Zerun Niu, Yansong Shi, Nguyen H. Tran, Phuong Vo, Walid Saad, Dusit Niyato, Zhu Han, Choong Seon Hong, H. Vincent Poor,
- Abstract summary: 6G wireless systems are expected to support massive volumes of data with ultra-low latency.<n> conventional bit-level transmission strategies cannot support the efficiency and adaptability required by modern, data-intensive applications.<n>The concept of semantic communication (SemCom) addresses this limitation by focusing on transmitting task-relevant semantic information instead of raw data.
- Score: 120.29419104482793
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: 6G wireless systems are expected to support massive volumes of data with ultra-low latency. However, conventional bit-level transmission strategies cannot support the efficiency and adaptability required by modern, data-intensive applications. The concept of semantic communication (SemCom) addresses this limitation by focusing on transmitting task-relevant semantic information instead of raw data. While recent efforts incorporating deep learning and large-scale AI models have improved SemCom's performance, existing systems remain vulnerable to both semantic-level and transmission-level noise because they often rely on domain-specific architectures that hinder generalizability. In this paper, a novel and generalized semantic communication framework called WaSeCom is proposed to systematically address uncertainty and enhance robustness. In particular, Wasserstein distributionally robust optimization is employed to provide resilience against semantic misinterpretation and channel perturbations. A rigorous theoretical analysis is performed to establish the robust generalization guarantees of the proposed framework. Experimental results on image and text transmission demonstrate that WaSeCom achieves improved robustness under noise and adversarial perturbations. These results highlight its effectiveness in preserving semantic fidelity across varying wireless conditions.
Related papers
- RIS-aided Latent Space Alignment for Semantic Channel Equalization [10.555901476981923]
We introduce a new paradigm in wireless communications, focusing on transmitting the intended meaning rather than ensuring strict bit-level accuracy.<n>These systems often rely on Deep Neural Networks (DNNs) to learn and encode meaning directly from data, enabling more efficient communication.<n>In this work, we propose a joint physical and semantic channel equalization framework that leverages the presence of Reconfigurable Intelligent Surfaces (RIS)<n>We show that the proposed joint equalization strategies consistently outperform conventional, disjoint approaches to physical and semantic channel equalization across a broad range of scenarios and wireless channel conditions.
arXiv Detail & Related papers (2025-07-22T10:51:35Z) - Diffusion-based Task-oriented Semantic Communications with Model Inversion Attack [6.115539523178243]
Task-oriented semantic communication is a promising neural network-based system design for 6G networks.<n>We propose a diffusion-based semantic communication framework, named DiffSem, to optimize semantic information reconstruction.<n>Our results show that DiffSem improves the classification accuracy by 10.03%, and maintain stable performance under dynamic channels.
arXiv Detail & Related papers (2025-06-24T05:21:27Z) - Communication-Efficient Federated Learning by Quantized Variance Reduction for Heterogeneous Wireless Edge Networks [55.467288506826755]
Federated learning (FL) has been recognized as a viable solution for local-privacy-aware collaborative model training in wireless edge networks.<n>Most existing communication-efficient FL algorithms fail to reduce the significant inter-device variance.<n>We propose a novel communication-efficient FL algorithm, named FedQVR, which relies on a sophisticated variance-reduced scheme.
arXiv Detail & Related papers (2025-01-20T04:26:21Z) - Latent Diffusion Model-Enabled Low-Latency Semantic Communication in the Presence of Semantic Ambiguities and Wireless Channel Noises [18.539501941328393]
This paper develops a latent diffusion model-enabled SemCom system to handle outliers in source data.<n>A lightweight single-layer latent space transformation adapter completes one-shot learning at the transmitter.<n>An end-to-end consistency distillation strategy is used to distill the diffusion models trained in latent space.
arXiv Detail & Related papers (2024-06-09T23:39:31Z) - Agent-driven Generative Semantic Communication with Cross-Modality and Prediction [57.335922373309074]
We propose a novel agent-driven generative semantic communication framework based on reinforcement learning.
In this work, we develop an agent-assisted semantic encoder with cross-modality capability, which can track the semantic changes, channel condition, to perform adaptive semantic extraction and sampling.
The effectiveness of the designed models has been verified using the UA-DETRAC dataset, demonstrating the performance gains of the overall A-GSC framework.
arXiv Detail & Related papers (2024-04-10T13:24:27Z) - A Wireless AI-Generated Content (AIGC) Provisioning Framework Empowered by Semantic Communication [53.78269720999609]
This paper proposes a semantic communication (SemCom)-empowered AIGC (SemAIGC) generation and transmission framework.
Specifically, SemAIGC integrates diffusion models within the semantic encoder and decoder to design a workload-adjustable transceiver.
Simulations verify the superiority of our proposed SemAIGC framework in terms of latency and content quality compared to conventional approaches.
arXiv Detail & Related papers (2023-10-26T18:05:22Z) - Generative AI-aided Joint Training-free Secure Semantic Communications
via Multi-modal Prompts [89.04751776308656]
This paper proposes a GAI-aided SemCom system with multi-model prompts for accurate content decoding.
In response to security concerns, we introduce the application of covert communications aided by a friendly jammer.
arXiv Detail & Related papers (2023-09-05T23:24:56Z) - Causal Semantic Communication for Digital Twins: A Generalizable
Imitation Learning Approach [74.25870052841226]
A digital twin (DT) leverages a virtual representation of the physical world, along with communication (e.g., 6G), computing, and artificial intelligence (AI) technologies to enable many connected intelligence services.
Wireless systems can exploit the paradigm of semantic communication (SC) for facilitating informed decision-making under strict communication constraints.
A novel framework called causal semantic communication (CSC) is proposed for DT-based wireless systems.
arXiv Detail & Related papers (2023-04-25T00:15:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.