Beyond Autocomplete: Designing CopilotLens Towards Transparent and Explainable AI Coding Agents
- URL: http://arxiv.org/abs/2506.20062v1
- Date: Tue, 24 Jun 2025 23:50:03 GMT
- Title: Beyond Autocomplete: Designing CopilotLens Towards Transparent and Explainable AI Coding Agents
- Authors: Runlong Ye, Zeling Zhang, Boushra Almazroua, Michael Liut,
- Abstract summary: CopilotLens is an interactive framework that reframes code completion from a simple suggestion into a transparent, explainable event.<n>CopilotLens operates as an explanation layer that reveals the AI agent's "thought process" through a dynamic two-level interface.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: AI-powered code assistants are widely used to generate code completions, significantly boosting developer productivity. However, these tools typically present suggestions without explaining their rationale, leaving their decision-making process inscrutable. This opacity hinders developers' ability to critically evaluate the output, form accurate mental models, and build calibrated trust in the system. To address this, we introduce CopilotLens, a novel interactive framework that reframes code completion from a simple suggestion into a transparent, explainable event. CopilotLens operates as an explanation layer that reveals the AI agent's "thought process" through a dynamic two-level interface, surfacing everything from its reconstructed high-level plans to the specific codebase context influencing the code. This paper presents the design and rationale of CopilotLens, offering a concrete framework for building future agentic code assistants that prioritize clarity of reasoning over speed of suggestion, thereby fostering deeper comprehension and more robust human-AI collaboration.
Related papers
- AgentMesh: A Cooperative Multi-Agent Generative AI Framework for Software Development Automation [0.0]
We propose a Python-based framework that uses multiple cooperating LLM-powered agents to automate software development tasks.<n>In AgentMesh, specialized agents - a Planner, Coder, Debugger, and Reviewer - work in concert to transform a high-level requirement into fully realized code.
arXiv Detail & Related papers (2025-07-26T10:10:02Z) - Code with Me or for Me? How Increasing AI Automation Transforms Developer Workflows [66.1850490474361]
We conduct the first academic study to explore developer interactions with coding agents.<n>We evaluate two leading copilot and agentic coding assistants, GitHub Copilot and OpenHands.<n>Our results show agents have the potential to assist developers in ways that surpass copilots.
arXiv Detail & Related papers (2025-07-10T20:12:54Z) - Exploring Prompt Patterns in AI-Assisted Code Generation: Towards Faster and More Effective Developer-AI Collaboration [3.1861081539404137]
This paper explores the application of structured prompt patterns to minimize the number of interactions required for satisfactory AI-assisted code generation.<n>We analyzed seven distinct prompt patterns to evaluate their effectiveness in reducing back-and-forth communication between developers and AI.
arXiv Detail & Related papers (2025-06-02T12:43:08Z) - Vibe Coding vs. Agentic Coding: Fundamentals and Practical Implications of Agentic AI [0.36868085124383626]
Review presents a comprehensive analysis of two emerging paradigms in AI-assisted software development: vibe coding and agentic coding.<n> Vibe coding emphasizes intuitive, human-in-the-loop interaction through prompt-based, conversational interaction.<n>Agentic coding enables autonomous software development through goal-driven agents capable of planning, executing, testing, and iterating tasks with minimal human intervention.
arXiv Detail & Related papers (2025-05-26T03:00:21Z) - Scratch Copilot: Supporting Youth Creative Coding with AI [7.494510764739512]
We present Cognimates Scratch Copilot: an AI-powered assistant integrated into a Scratch-like environment.<n>This paper details the system architecture and findings from an exploratory qualitative evaluation with 18 international children.
arXiv Detail & Related papers (2025-05-06T17:13:29Z) - Interacting with AI Reasoning Models: Harnessing "Thoughts" for AI-Driven Software Engineering [11.149764135999437]
Recent advances in AI reasoning models provide unprecedented transparency into their decision-making processes.<n>Software engineers rarely have the time or cognitive bandwidth to analyze, verify, and interpret every AI-generated thought in detail.<n>We propose a vision for structuring the interaction between AI reasoning models and software engineers to maximize trust, efficiency, and decision-making power.
arXiv Detail & Related papers (2025-03-01T13:19:15Z) - Code to Think, Think to Code: A Survey on Code-Enhanced Reasoning and Reasoning-Driven Code Intelligence in LLMs [53.00384299879513]
In large language models (LLMs), code and reasoning reinforce each other.<n>Code provides verifiable execution paths, enforces logical decomposition, and enables runtime validation.<n>We identify key challenges and propose future research directions to strengthen this synergy.
arXiv Detail & Related papers (2025-02-26T18:55:42Z) - Codev-Bench: How Do LLMs Understand Developer-Centric Code Completion? [60.84912551069379]
We present the Code-Development Benchmark (Codev-Bench), a fine-grained, real-world, repository-level, and developer-centric evaluation framework.
Codev-Agent is an agent-based system that automates repository crawling, constructs execution environments, extracts dynamic calling chains from existing unit tests, and generates new test samples to avoid data leakage.
arXiv Detail & Related papers (2024-10-02T09:11:10Z) - Pangu-Agent: A Fine-Tunable Generalist Agent with Structured Reasoning [50.47568731994238]
Key method for creating Artificial Intelligence (AI) agents is Reinforcement Learning (RL)
This paper presents a general framework model for integrating and learning structured reasoning into AI agents' policies.
arXiv Detail & Related papers (2023-12-22T17:57:57Z) - Octopus: Embodied Vision-Language Programmer from Environmental Feedback [58.04529328728999]
Embodied vision-language models (VLMs) have achieved substantial progress in multimodal perception and reasoning.
To bridge this gap, we introduce Octopus, an embodied vision-language programmer that uses executable code generation as a medium to connect planning and manipulation.
Octopus is designed to 1) proficiently comprehend an agent's visual and textual task objectives, 2) formulate intricate action sequences, and 3) generate executable code.
arXiv Detail & Related papers (2023-10-12T17:59:58Z) - From Copilot to Pilot: Towards AI Supported Software Development [3.0585424861188844]
We study the limitations of AI-supported code completion tools like Copilot and offer a taxonomy for understanding the classification of AI-supported code completion tools in this space.
We then conduct additional investigation to determine the current boundaries of AI-supported code completion tools like Copilot.
We conclude by providing a discussion on challenges for future development of AI-supported code completion tools to reach the design level of abstraction in our taxonomy.
arXiv Detail & Related papers (2023-03-07T18:56:52Z) - Generation Probabilities Are Not Enough: Uncertainty Highlighting in AI Code Completions [54.55334589363247]
We study whether conveying information about uncertainty enables programmers to more quickly and accurately produce code.
We find that highlighting tokens with the highest predicted likelihood of being edited leads to faster task completion and more targeted edits.
arXiv Detail & Related papers (2023-02-14T18:43:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.