Seeing is Believing? Mitigating OCR Hallucinations in Multimodal Large Language Models
- URL: http://arxiv.org/abs/2506.20168v1
- Date: Wed, 25 Jun 2025 06:44:07 GMT
- Title: Seeing is Believing? Mitigating OCR Hallucinations in Multimodal Large Language Models
- Authors: Zhentao He, Can Zhang, Ziheng Wu, Zhenghao Chen, Yufei Zhan, Yifan Li, Zhao Zhang, Xian Wang, Minghui Qiu,
- Abstract summary: We propose KIE-HVQA, the first benchmark dedicated to evaluating OCR hallucination in degraded document understanding.<n>This dataset includes test samples spanning identity cards and invoices, with simulated real-world degradations for OCR reliability.<n>Experiments on Qwen2.5-VL demonstrate that our 7B- parameter model achieves a 22% absolute improvement in hallucination-free accuracy over GPT-4o.
- Score: 22.43132625619281
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in multimodal large language models have enhanced document understanding by integrating textual and visual information. However, existing models exhibit incompleteness within their paradigm in real-world scenarios, particularly under visual degradation. In such conditions, the current response paradigm often fails to adequately perceive visual degradation and ambiguity, leading to overreliance on linguistic priors or misaligned visual-textual reasoning. This difficulty in recognizing uncertainty frequently results in the generation of hallucinatory content, especially when a precise answer is not feasible. To better demonstrate and analyze this phenomenon and problem, we propose KIE-HVQA, the first benchmark dedicated to evaluating OCR hallucination in degraded document understanding. This dataset includes test samples spanning identity cards and invoices, with simulated real-world degradations for OCR reliability. This setup allows for evaluating models' capacity, under degraded input, to distinguish reliable visual information and answer accordingly, thereby highlighting the challenge of avoiding hallucination on uncertain data. To achieve vision-faithful reasoning and thereby avoid the aforementioned issues, we further introduce a GRPO-based framework featuring a novel reward mechanism. By incorporating a self-awareness of visual uncertainty and an analysis method that initiates refusal to answer to increase task difficulty within our supervised fine-tuning and reinforcement learning framework, we successfully mitigated hallucinations in ambiguous regions. Experiments on Qwen2.5-VL demonstrate that our 7B-parameter model achieves a 22\% absolute improvement in hallucination-free accuracy over GPT-4o on KIE-HVQA and there is no significant performance drop in standard tasks, highlighting both effectiveness and robustness.
Related papers
- Visual hallucination detection in large vision-language models via evidential conflict [24.465497252040294]
Dempster-Shafer theory (DST)-based visual hallucination detection method for LVLMs through uncertainty estimation.<n>We propose to the best of our knowledge, the first Dempster-Shafer theory (DST)-based visual hallucination detection method for LVLMs through uncertainty estimation.
arXiv Detail & Related papers (2025-06-24T11:03:10Z) - Preemptive Hallucination Reduction: An Input-Level Approach for Multimodal Language Model [1.124958340749622]
This study presents a novel ensemble-based preprocessing framework that adaptively selects the most appropriate filtering approach.<n>The method achieves a 44.3% reduction in hallucination rates, as measured by Natural Language Inference (NLI) scores.<n>The findings highlight the importance of adaptive preprocessing techniques in mitigating hallucinations, paving the way for more reliable multimodal systems.
arXiv Detail & Related papers (2025-05-29T21:09:34Z) - Mitigating Low-Level Visual Hallucinations Requires Self-Awareness: Database, Model and Training Strategy [53.07517728420411]
We introduce the first instruction database specifically focused on hallucinations in low-level vision tasks.<n>We propose the Self-Awareness Failure Elimination (SAFEQA) model to improve the perception and comprehension abilities of the model in low-level vision tasks.<n>We conduct comprehensive experiments on low-level vision tasks, with the results demonstrating that our proposed method significantly enhances self-awareness of the model in these tasks and reduces hallucinations.
arXiv Detail & Related papers (2025-03-26T16:05:01Z) - PerturboLLaVA: Reducing Multimodal Hallucinations with Perturbative Visual Training [56.172959986096316]
This paper aims to address the challenge of hallucinations in Multimodal Large Language Models (MLLMs)<n>HalFscore is a novel metric built upon the language graph and is designed to evaluate both the accuracy and completeness of dense captions at a granular level.<n>PerturboLLaVA significantly improves the fidelity of generated captions, outperforming existing approaches in handling multimodal hallucinations.
arXiv Detail & Related papers (2025-03-09T07:07:03Z) - HuDEx: Integrating Hallucination Detection and Explainability for Enhancing the Reliability of LLM responses [0.12499537119440242]
This paper proposes an explanation enhanced hallucination-detection model, coined as HuDEx.<n>The proposed model provides a novel approach to integrate detection with explanations, and enable both users and the LLM itself to understand and reduce errors.
arXiv Detail & Related papers (2025-02-12T04:17:02Z) - Towards a Systematic Evaluation of Hallucinations in Large-Vision Language Models [57.58426038241812]
Large Vision-Language Models (LVLMs) have demonstrated remarkable performance in complex multimodal tasks.<n>These models still suffer from hallucinations when required to implicitly recognize or infer diverse visual entities from images.<n>We propose a novel visual question answering (VQA) benchmark that employs contextual reasoning prompts as hallucination attacks.
arXiv Detail & Related papers (2024-12-29T23:56:01Z) - LoGU: Long-form Generation with Uncertainty Expressions [49.76417603761989]
We introduce the task of Long-form Generation with Uncertainty(LoGU)<n>We identify two key challenges: Uncertainty Suppression and Uncertainty Misalignment.<n>Our framework adopts a divide-and-conquer strategy, refining uncertainty based on atomic claims.<n>Experiments on three long-form instruction following datasets show that our method significantly improves accuracy, reduces hallucinations, and maintains the comprehensiveness of responses.
arXiv Detail & Related papers (2024-10-18T09:15:35Z) - VALOR-EVAL: Holistic Coverage and Faithfulness Evaluation of Large Vision-Language Models [57.43276586087863]
Large Vision-Language Models (LVLMs) suffer from hallucination issues, wherein the models generate plausible-sounding but factually incorrect outputs.
Existing benchmarks are often limited in scope, focusing mainly on object hallucinations.
We introduce a multi-dimensional benchmark covering objects, attributes, and relations, with challenging images selected based on associative biases.
arXiv Detail & Related papers (2024-04-22T04:49:22Z) - IBD: Alleviating Hallucinations in Large Vision-Language Models via
Image-Biased Decoding [37.16880672402059]
Over-reliance on linguistic priors has been identified as a key factor leading to hallucinations.
We propose to alleviate this problem by introducing a novel image-biased decoding technique.
Our method derives the next-token probability distribution by contrasting predictions from a conventional LVLM with those of an image-biased LVLM.
arXiv Detail & Related papers (2024-02-28T16:57:22Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
Deepfakes are realistic face manipulations that can pose serious threats to security, privacy, and trust.
Existing methods mostly treat this task as binary classification, which uses digital labels or mask signals to train the detection model.
We propose a novel paradigm named Visual-Linguistic Face Forgery Detection(VLFFD), which uses fine-grained sentence-level prompts as the annotation.
arXiv Detail & Related papers (2023-07-31T10:22:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.