On the ability of Deep Neural Networks to Learn Granger Causality in Multi-Variate Time Series Data
- URL: http://arxiv.org/abs/2506.20347v1
- Date: Wed, 25 Jun 2025 11:57:24 GMT
- Title: On the ability of Deep Neural Networks to Learn Granger Causality in Multi-Variate Time Series Data
- Authors: Malik Shahid Sultan, Hernando Ombao,
- Abstract summary: We show that a well regularized model infact can learn the true GC structure from the data without explicitly adding terms in the loss function.<n>We also compare the effect of input layer dropout on the ability of a neural network to learn granger causality from the data.
- Score: 8.33049663808736
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Granger Causality (GC) offers an elegant statistical framework to study the association between multivariate time series data. Linear Vector Autoregressive models (VAR) though have nice interpretation properties but have limited practical application due to underlying assumptions on the kind of associations that can be captured by these models. Numerous attempts have already been made in the literature that exploit the functional approximation power of Deep Neural Networks (DNNs) for the task of GC estimation. These methods however treat GC as a variable selection problem. We present a novel paradigm for approaching GC. We present this idea that GC is essentially linked with prediction and if a deep learning model is used to model the time series collectively or jointly, a well regularized model may learn the true granger causal structure from the data, given that there is enough training data. We propose to uncover the learned GC structure by comparing the model uncertainty or distribution of the residuals when the past of everything is used as compared to the one where a specific time series component is dropped from the model. We also compare the effect of input layer dropout on the ability of a neural network to learn granger causality from the data. We show that a well regularized model infact can learn the true GC structure from the data without explicitly adding terms in the loss function that guide the model to select variables or perform sparse regression.
Related papers
- Generalization of Graph Neural Networks is Robust to Model Mismatch [84.01980526069075]
Graph neural networks (GNNs) have demonstrated their effectiveness in various tasks supported by their generalization capabilities.
In this paper, we examine GNNs that operate on geometric graphs generated from manifold models.
Our analysis reveals the robustness of the GNN generalization in the presence of such model mismatch.
arXiv Detail & Related papers (2024-08-25T16:00:44Z) - Exploring Beyond Logits: Hierarchical Dynamic Labeling Based on Embeddings for Semi-Supervised Classification [49.09505771145326]
We propose a Hierarchical Dynamic Labeling (HDL) algorithm that does not depend on model predictions and utilizes image embeddings to generate sample labels.
Our approach has the potential to change the paradigm of pseudo-label generation in semi-supervised learning.
arXiv Detail & Related papers (2024-04-26T06:00:27Z) - Timer: Generative Pre-trained Transformers Are Large Time Series Models [83.03091523806668]
This paper aims at the early development of large time series models (LTSM)
During pre-training, we curate large-scale datasets with up to 1 billion time points.
To meet diverse application needs, we convert forecasting, imputation, and anomaly detection of time series into a unified generative task.
arXiv Detail & Related papers (2024-02-04T06:55:55Z) - Generative Modeling of Regular and Irregular Time Series Data via Koopman VAEs [50.25683648762602]
We introduce Koopman VAE, a new generative framework that is based on a novel design for the model prior.
Inspired by Koopman theory, we represent the latent conditional prior dynamics using a linear map.
KoVAE outperforms state-of-the-art GAN and VAE methods across several challenging synthetic and real-world time series generation benchmarks.
arXiv Detail & Related papers (2023-10-04T07:14:43Z) - Granger Causality using Neural Networks [7.62566998854384]
We propose novel classes of models that can handle underlying non-linearity in a computationally efficient manner.
We show one can directly decouple lags and individual time series importance via decoupled penalties.
This is important as we want to select the lag order during the process of GC estimation.
arXiv Detail & Related papers (2022-08-07T12:02:48Z) - Deep Generative model with Hierarchical Latent Factors for Time Series
Anomaly Detection [40.21502451136054]
This work presents DGHL, a new family of generative models for time series anomaly detection.
A top-down Convolution Network maps a novel hierarchical latent space to time series windows, exploiting temporal dynamics to encode information efficiently.
Our method outperformed current state-of-the-art models on four popular benchmark datasets.
arXiv Detail & Related papers (2022-02-15T17:19:44Z) - Continual Learning with Fully Probabilistic Models [70.3497683558609]
We present an approach for continual learning based on fully probabilistic (or generative) models of machine learning.
We propose a pseudo-rehearsal approach using a Gaussian Mixture Model (GMM) instance for both generator and classifier functionalities.
We show that GMR achieves state-of-the-art performance on common class-incremental learning problems at very competitive time and memory complexity.
arXiv Detail & Related papers (2021-04-19T12:26:26Z) - Deep Time Series Models for Scarce Data [8.673181404172963]
Time series data have grown at an explosive rate in numerous domains and have stimulated a surge of time series modeling research.
Data scarcity is a universal issue that occurs in a vast range of data analytics problems.
arXiv Detail & Related papers (2021-03-16T22:16:54Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z) - Learning from Irregularly-Sampled Time Series: A Missing Data
Perspective [18.493394650508044]
Irregularly-sampled time series occur in many domains including healthcare.
We model irregularly-sampled time series data as a sequence of index-value pairs sampled from a continuous but unobserved function.
We propose learning methods for this framework based on variational autoencoders and generative adversarial networks.
arXiv Detail & Related papers (2020-08-17T20:01:55Z) - Conditional Mutual information-based Contrastive Loss for Financial Time
Series Forecasting [12.0855096102517]
We present a representation learning framework for financial time series forecasting.
In this paper, we propose to first learn compact representations from time series data, then use the learned representations to train a simpler model for predicting time series movements.
arXiv Detail & Related papers (2020-02-18T15:24:33Z) - Revisiting Graph based Collaborative Filtering: A Linear Residual Graph
Convolutional Network Approach [55.44107800525776]
Graph Convolutional Networks (GCNs) are state-of-the-art graph based representation learning models.
In this paper, we revisit GCN based Collaborative Filtering (CF) based Recommender Systems (RS)
We show that removing non-linearities would enhance recommendation performance, consistent with the theories in simple graph convolutional networks.
We propose a residual network structure that is specifically designed for CF with user-item interaction modeling.
arXiv Detail & Related papers (2020-01-28T04:41:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.