HiWave: Training-Free High-Resolution Image Generation via Wavelet-Based Diffusion Sampling
- URL: http://arxiv.org/abs/2506.20452v1
- Date: Wed, 25 Jun 2025 13:58:37 GMT
- Title: HiWave: Training-Free High-Resolution Image Generation via Wavelet-Based Diffusion Sampling
- Authors: Tobias Vontobel, Seyedmorteza Sadat, Farnood Salehi, Romann M. Weber,
- Abstract summary: HiWave is a training-free, zero-shot approach that substantially enhances visual fidelity and structural coherence in ultra-high-resolution image synthesis.<n>A user study confirmed HiWave's performance, where it was preferred over the state-of-the-art alternative in more than 80% of comparisons.
- Score: 1.9474278832087901
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models have emerged as the leading approach for image synthesis, demonstrating exceptional photorealism and diversity. However, training diffusion models at high resolutions remains computationally prohibitive, and existing zero-shot generation techniques for synthesizing images beyond training resolutions often produce artifacts, including object duplication and spatial incoherence. In this paper, we introduce HiWave, a training-free, zero-shot approach that substantially enhances visual fidelity and structural coherence in ultra-high-resolution image synthesis using pretrained diffusion models. Our method employs a two-stage pipeline: generating a base image from the pretrained model followed by a patch-wise DDIM inversion step and a novel wavelet-based detail enhancer module. Specifically, we first utilize inversion methods to derive initial noise vectors that preserve global coherence from the base image. Subsequently, during sampling, our wavelet-domain detail enhancer retains low-frequency components from the base image to ensure structural consistency, while selectively guiding high-frequency components to enrich fine details and textures. Extensive evaluations using Stable Diffusion XL demonstrate that HiWave effectively mitigates common visual artifacts seen in prior methods, achieving superior perceptual quality. A user study confirmed HiWave's performance, where it was preferred over the state-of-the-art alternative in more than 80% of comparisons, highlighting its effectiveness for high-quality, ultra-high-resolution image synthesis without requiring retraining or architectural modifications.
Related papers
- Quaternion Wavelet-Conditioned Diffusion Models for Image Super-Resolution [7.986370916847687]
We introduce ResQu, a novel SR framework that integrates a quaternion wavelet preprocessing framework with latent diffusion models.<n>Our approach enhances the conditioning process by exploiting quaternion wavelet embeddings, which are dynamically integrated at different stages of denoising.<n>Our method achieves outstanding SR results, outperforming in many cases existing approaches in perceptual quality and standard evaluation metrics.
arXiv Detail & Related papers (2025-05-01T06:17:33Z) - A Hybrid Wavelet-Fourier Method for Next-Generation Conditional Diffusion Models [0.0]
We present a novel generative modeling framework,Wavelet-Fourier-Diffusion, which adapts the diffusion paradigm to hybrid frequency representations.<n>We show how the hybrid frequency-based representation improves control over global coherence and fine texture synthesis.
arXiv Detail & Related papers (2025-04-04T17:11:04Z) - MSF: Efficient Diffusion Model Via Multi-Scale Latent Factorize [18.73205699076486]
We introduce a diffusion framework leveraging multi-scale latent factorization.<n>Our framework decomposes the denoising target, typically latent features from a pretrained Variational Autoencoder, into a low-frequency base signal.<n>Our proposed architecture facilitates reduced sampling steps during the residual learning stage.
arXiv Detail & Related papers (2025-01-23T03:18:23Z) - Arbitrary-steps Image Super-resolution via Diffusion Inversion [68.78628844966019]
This study presents a new image super-resolution (SR) technique based on diffusion inversion, aiming at harnessing the rich image priors encapsulated in large pre-trained diffusion models to improve SR performance.<n>We design a Partial noise Prediction strategy to construct an intermediate state of the diffusion model, which serves as the starting sampling point.<n>Once trained, this noise predictor can be used to initialize the sampling process partially along the diffusion trajectory, generating the desirable high-resolution result.
arXiv Detail & Related papers (2024-12-12T07:24:13Z) - Oscillation Inversion: Understand the structure of Large Flow Model through the Lens of Inversion Method [60.88467353578118]
We show that a fixed-point-inspired iterative approach to invert real-world images does not achieve convergence, instead oscillating between distinct clusters.
We introduce a simple and fast distribution transfer technique that facilitates image enhancement, stroke-based recoloring, as well as visual prompt-guided image editing.
arXiv Detail & Related papers (2024-11-17T17:45:37Z) - Effective Diffusion Transformer Architecture for Image Super-Resolution [63.254644431016345]
We design an effective diffusion transformer for image super-resolution (DiT-SR)
In practice, DiT-SR leverages an overall U-shaped architecture, and adopts a uniform isotropic design for all the transformer blocks.
We analyze the limitation of the widely used AdaLN, and present a frequency-adaptive time-step conditioning module.
arXiv Detail & Related papers (2024-09-29T07:14:16Z) - Timestep-Aware Diffusion Model for Extreme Image Rescaling [47.89362819768323]
We propose a novel framework called Timestep-Aware Diffusion Model (TADM) for extreme image rescaling.<n>TADM performs rescaling operations in the latent space of a pre-trained autoencoder.<n>It effectively leverages powerful natural image priors learned by a pre-trained text-to-image diffusion model.
arXiv Detail & Related papers (2024-08-17T09:51:42Z) - ScaleCrafter: Tuning-free Higher-Resolution Visual Generation with
Diffusion Models [126.35334860896373]
We investigate the capability of generating images from pre-trained diffusion models at much higher resolutions than the training image sizes.
Existing works for higher-resolution generation, such as attention-based and joint-diffusion approaches, cannot well address these issues.
We propose a simple yet effective re-dilation that can dynamically adjust the convolutional perception field during inference.
arXiv Detail & Related papers (2023-10-11T17:52:39Z) - Stage-by-stage Wavelet Optimization Refinement Diffusion Model for
Sparse-View CT Reconstruction [14.037398189132468]
We present an innovative approach named the Stage-by-stage Wavelet Optimization Refinement Diffusion (SWORD) model for sparse-view CT reconstruction.
Specifically, we establish a unified mathematical model integrating low-frequency and high-frequency generative models, achieving the solution with optimization procedure.
Our method rooted in established optimization theory, comprising three distinct stages, including low-frequency generation, high-frequency refinement and domain transform.
arXiv Detail & Related papers (2023-08-30T10:48:53Z) - ACDMSR: Accelerated Conditional Diffusion Models for Single Image
Super-Resolution [84.73658185158222]
We propose a diffusion model-based super-resolution method called ACDMSR.
Our method adapts the standard diffusion model to perform super-resolution through a deterministic iterative denoising process.
Our approach generates more visually realistic counterparts for low-resolution images, emphasizing its effectiveness in practical scenarios.
arXiv Detail & Related papers (2023-07-03T06:49:04Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
Diffusion models have achieved promising results in image restoration tasks, yet suffer from time-consuming, excessive computational resource consumption, and unstable restoration.
We propose a robust and efficient Diffusion-based Low-Light image enhancement approach, dubbed DiffLL.
arXiv Detail & Related papers (2023-06-01T03:08:28Z) - WaveDM: Wavelet-Based Diffusion Models for Image Restoration [43.254438752311714]
Wavelet-Based Diffusion Model (WaveDM) learns the distribution of clean images in the wavelet domain conditioned on the wavelet spectrum of degraded images after wavelet transform.
WaveDM achieves state-of-the-art performance with the efficiency that is comparable to traditional one-pass methods.
arXiv Detail & Related papers (2023-05-23T08:41:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.