Mixtures of Neural Cellular Automata: A Stochastic Framework for Growth Modelling and Self-Organization
- URL: http://arxiv.org/abs/2506.20486v1
- Date: Wed, 25 Jun 2025 14:33:35 GMT
- Title: Mixtures of Neural Cellular Automata: A Stochastic Framework for Growth Modelling and Self-Organization
- Authors: Salvatore Milite, Giulio Caravagna, Andrea Sottoriva,
- Abstract summary: Neural Cellular Automata (NCAs) are a promising new approach to model self-organizing processes.<n>We propose the Mixture of Neural Cellular Automata (MNCA), a novel framework incorporating the idea of mixture models into the NCA paradigm.<n>We evaluate the effectiveness of MNCAs in three key domains: (1) synthetic simulations of tissue growth and differentiation, (2) image morphogenesis robustness, and (3) microscopy image segmentation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural Cellular Automata (NCAs) are a promising new approach to model self-organizing processes, with potential applications in life science. However, their deterministic nature limits their ability to capture the stochasticity of real-world biological and physical systems. We propose the Mixture of Neural Cellular Automata (MNCA), a novel framework incorporating the idea of mixture models into the NCA paradigm. By combining probabilistic rule assignments with intrinsic noise, MNCAs can model diverse local behaviors and reproduce the stochastic dynamics observed in biological processes. We evaluate the effectiveness of MNCAs in three key domains: (1) synthetic simulations of tissue growth and differentiation, (2) image morphogenesis robustness, and (3) microscopy image segmentation. Results show that MNCAs achieve superior robustness to perturbations, better recapitulate real biological growth patterns, and provide interpretable rule segmentation. These findings position MNCAs as a promising tool for modeling stochastic dynamical systems and studying self-growth processes.
Related papers
- Langevin Flows for Modeling Neural Latent Dynamics [81.81271685018284]
We introduce LangevinFlow, a sequential Variational Auto-Encoder where the time evolution of latent variables is governed by the underdamped Langevin equation.<n>Our approach incorporates physical priors -- such as inertia, damping, a learned potential function, and forces -- to represent both autonomous and non-autonomous processes in neural systems.<n>Our method outperforms state-of-the-art baselines on synthetic neural populations generated by a Lorenz attractor.
arXiv Detail & Related papers (2025-07-15T17:57:48Z) - A Symbolic and Statistical Learning Framework to Discover Bioprocessing Regulatory Mechanism: Cell Culture Example [2.325005809983534]
This paper introduces a symbolic and statistical learning framework to identify key regulatory mechanisms and model uncertainty.<n>A Metropolis-adjusted Langevin algorithm with adjoint sensitivity analysis is developed for posterior exploration.<n>An empirical study demonstrates its ability to recover missing regulatory mechanisms and improve model fidelity under datalimited conditions.
arXiv Detail & Related papers (2025-05-06T04:39:34Z) - A Novel Framework for Learning Stochastic Representations for Sequence Generation and Recognition [0.0]
The ability to generate and recognize sequential data is fundamental for autonomous systems operating in dynamic environments.<n>We propose a novel Recurrent Network with Parametric Biases (RNNPB)<n>Our approach provides a framework for modeling temporal patterns and advances the development of robust and systems in artificial intelligence and robotics.
arXiv Detail & Related papers (2024-12-30T07:27:50Z) - Omics-driven hybrid dynamic modeling of bioprocesses with uncertainty estimation [0.0]
This work presents an omics-driven modeling pipeline that integrates machine-learning tools.<n> Random forests and permutation feature importance are proposed to mine omics datasets.<n> Continuous and differentiable machine-learning functions can be trained to link the reduced omics feature set to key components of the dynamic model.
arXiv Detail & Related papers (2024-10-24T15:50:35Z) - MS-MANO: Enabling Hand Pose Tracking with Biomechanical Constraints [50.61346764110482]
We integrate a musculoskeletal system with a learnable parametric hand model, MANO, to create MS-MANO.
This model emulates the dynamics of muscles and tendons to drive the skeletal system, imposing physiologically realistic constraints on the resulting torque trajectories.
We also propose a simulation-in-the-loop pose refinement framework, BioPR, that refines the initial estimated pose through a multi-layer perceptron network.
arXiv Detail & Related papers (2024-04-16T02:18:18Z) - Learning spatio-temporal patterns with Neural Cellular Automata [0.0]
We train NCA to learn complex dynamics from time series of images and PDE trajectories.
We extend NCA to capture both transient and stable structures within the same system.
Being able to learn arbitrary dynamics gives NCA great potential as a data driven modelling framework.
arXiv Detail & Related papers (2023-10-23T11:16:32Z) - Conditional Generative Models for Simulation of EMG During Naturalistic
Movements [45.698312905115955]
We present a conditional generative neural network trained adversarially to generate motor unit activation potential waveforms.
We demonstrate the ability of such a model to predictively interpolate between a much smaller number of numerical model's outputs with a high accuracy.
arXiv Detail & Related papers (2022-11-03T14:49:02Z) - Growing Isotropic Neural Cellular Automata [63.91346650159648]
We argue that the original Growing NCA model has an important limitation: anisotropy of the learned update rule.
We demonstrate that cell systems can be trained to grow accurate asymmetrical patterns through either of two methods.
arXiv Detail & Related papers (2022-05-03T11:34:22Z) - Variational Neural Cellular Automata [7.863826008567604]
In nature, the process of cellular growth and differentiation has lead to an amazing diversity of organisms.
We propose a generative model, the Variational Cellular Automata (VNCA), which is loosely inspired by the biological processes of cellular growth and differentiation.
arXiv Detail & Related papers (2022-01-28T11:41:53Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process (INP) is a deep active learning framework for simulations and with active learning approaches.
For active learning, we propose a novel acquisition function, Latent Information Gain (LIG), calculated in the latent space of NP based models.
The results demonstrate STNP outperforms the baselines in the learning setting and LIG achieves the state-of-the-art for active learning.
arXiv Detail & Related papers (2021-06-05T01:31:51Z) - Continuous Learning and Adaptation with Membrane Potential and
Activation Threshold Homeostasis [91.3755431537592]
This paper presents the Membrane Potential and Activation Threshold Homeostasis (MPATH) neuron model.
The model allows neurons to maintain a form of dynamic equilibrium by automatically regulating their activity when presented with input.
Experiments demonstrate the model's ability to adapt to and continually learn from its input.
arXiv Detail & Related papers (2021-04-22T04:01:32Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z) - Neural Cellular Automata Manifold [84.08170531451006]
We show that the neural network architecture of the Neural Cellular Automata can be encapsulated in a larger NN.
This allows us to propose a new model that encodes a manifold of NCA, each of them capable of generating a distinct image.
In biological terms, our approach would play the role of the transcription factors, modulating the mapping of genes into specific proteins that drive cellular differentiation.
arXiv Detail & Related papers (2020-06-22T11:41:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.