AI-assisted radiographic analysis in detecting alveolar bone-loss severity and patterns
- URL: http://arxiv.org/abs/2506.20522v1
- Date: Wed, 25 Jun 2025 15:08:52 GMT
- Title: AI-assisted radiographic analysis in detecting alveolar bone-loss severity and patterns
- Authors: Chathura Wimalasiri, Piumal Rathnayake, Shamod Wijerathne, Sumudu Rasnayaka, Dhanushka Leuke Bandara, Roshan Ragel, Vajira Thambawita, Isuru Nawinne,
- Abstract summary: We propose a novel AI-based deep learning framework to automatically detect and quantify alveolar bone loss.<n>Our method combines YOLOv8 for tooth detection with Keypoint R-CNN models to identify anatomical landmarks.<n>YOLOv8x-seg models segment bone levels and tooth masks to determine bone loss patterns.
- Score: 0.3767121007961969
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Periodontitis, a chronic inflammatory disease causing alveolar bone loss, significantly affects oral health and quality of life. Accurate assessment of bone loss severity and pattern is critical for diagnosis and treatment planning. In this study, we propose a novel AI-based deep learning framework to automatically detect and quantify alveolar bone loss and its patterns using intraoral periapical (IOPA) radiographs. Our method combines YOLOv8 for tooth detection with Keypoint R-CNN models to identify anatomical landmarks, enabling precise calculation of bone loss severity. Additionally, YOLOv8x-seg models segment bone levels and tooth masks to determine bone loss patterns (horizontal vs. angular) via geometric analysis. Evaluated on a large, expertly annotated dataset of 1000 radiographs, our approach achieved high accuracy in detecting bone loss severity (intra-class correlation coefficient up to 0.80) and bone loss pattern classification (accuracy 87%). This automated system offers a rapid, objective, and reproducible tool for periodontal assessment, reducing reliance on subjective manual evaluation. By integrating AI into dental radiographic analysis, our framework has the potential to improve early diagnosis and personalized treatment planning for periodontitis, ultimately enhancing patient care and clinical outcomes.
Related papers
- A Deep Learning-Based Ensemble System for Automated Shoulder Fracture Detection in Clinical Radiographs [0.0]
Shoulder fractures are often underdiagnosed, especially in emergency and high-volume clinical settings.<n>We developed a multi-model deep learning system using 10,000 annotated shoulder X-rays.<n>The ensemble-based AI can reliably detect shoulder fractures in radiographs with high clinical relevance.
arXiv Detail & Related papers (2025-07-17T06:06:12Z) - Integrating Radiomics with Deep Learning Enhances Multiple Sclerosis Lesion Delineation [0.02335197906428421]
We suggested novel radiomic features (concentration rate and R'enyi entropy) to characterize MS lesion types and fused these with raw imaging data.<n>The study integrated radiomic features with imaging data through a ResNeXt-UNet architecture and attention-augmented U-Net architecture.
arXiv Detail & Related papers (2025-06-17T13:50:42Z) - Unsupervised Machine Learning for Osteoporosis Diagnosis Using Singh Index Clustering on Hip Radiographs [0.0]
Singh Index (SI) provides a straightforward, semi-quantitative means of osteoporosis diagnosis through plain hip radiographs.
This study aims to automate SI identification from radiographs using machine learning algorithms.
arXiv Detail & Related papers (2024-11-22T08:44:43Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive neurodegenerative disease that presents individuals with limited treatment options.
The present investigation, spearheaded by the iDPP@CLEF 2024 challenge, focuses on utilizing sensor-derived data obtained through an app.
arXiv Detail & Related papers (2024-07-10T19:17:23Z) - A Deep Learning Model for Coronary Artery Segmentation and Quantitative Stenosis Detection in Angiographic Images [2.6879908098704544]
We propose a novel deep learning-based method for the automatic segmentation of coronary arteries in angiographic images.<n>The model combines the MedSAM and VM-UNet architectures to achieve high-performance results.<n>The stenosis detection algorithm achieved a true positive rate (TPR) of 0.5867 and a positive predictive value (PPV) of 0.5911.
arXiv Detail & Related papers (2024-06-01T16:45:33Z) - Neural Network-Based Histologic Remission Prediction In Ulcerative
Colitis [38.150634108667774]
Histologic remission is a new therapeutic target in ulcerative colitis (UC)
Endocytoscopy (EC) is a novel ultra-high magnification endoscopic technique.
We propose a neural network model that can assess histological disease activity in EC images.
arXiv Detail & Related papers (2023-08-28T15:54:14Z) - Confidence-Driven Deep Learning Framework for Early Detection of Knee Osteoarthritis [8.193689534916988]
Knee Osteoarthritis (KOA) is a prevalent musculoskeletal disorder that severely impacts mobility and quality of life.<n>We propose a confidence-driven deep learning framework for early KOA detection, focusing on distinguishing KL-0 and KL-2 stages.<n> Experimental results demonstrate that the proposed framework achieves competitive accuracy, sensitivity, and specificity, comparable to those of expert radiologists.
arXiv Detail & Related papers (2023-03-23T11:57:50Z) - Penalized Deep Partially Linear Cox Models with Application to CT Scans
of Lung Cancer Patients [42.09584755334577]
Lung cancer is a leading cause of cancer mortality globally, highlighting the importance of understanding its mortality risks to design effective therapies.
The National Lung Screening Trial (NLST) employed computed tomography texture analysis to quantify the mortality risks of lung cancer patients.
We propose a novel Penalized Deep Partially Linear Cox Model (Penalized DPLC), which incorporates the SCAD penalty to select important texture features and employs a deep neural network to estimate the nonparametric component of the model.
arXiv Detail & Related papers (2023-03-09T15:38:16Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
We propose to leverage transfer learning from large datasets annotated by radiologists, to predict the histological score available on a small annex dataset.
We compare different pretraining methods, namely weakly-supervised and self-supervised ones, to improve the prediction of the cirrhosis.
This method outperforms the baseline classification of the METAVIR score, reaching an AUC of 0.84 and a balanced accuracy of 0.75.
arXiv Detail & Related papers (2023-02-16T17:06:23Z) - Deep-Learning Tool for Early Identifying Non-Traumatic Intracranial
Hemorrhage Etiology based on CT Scan [40.51754649947294]
The deep learning model was developed with 1868 eligible NCCT scans with non-traumatic ICH collected between January 2011 and April 2018.
The model's diagnostic performance was compared with clinicians's performance.
The clinicians achieve significant improvements in the sensitivity, specificity, and accuracy of diagnoses of certain hemorrhage etiologies with proposed system augmentation.
arXiv Detail & Related papers (2023-02-02T08:45:17Z) - Breast Cancer Induced Bone Osteolysis Prediction Using Temporal
Variational Auto-Encoders [65.95959936242993]
We develop a deep learning framework that can accurately predict and visualize the progression of osteolytic bone lesions.
It will assist in planning and evaluating treatment strategies to prevent skeletal related events (SREs) in breast cancer patients.
arXiv Detail & Related papers (2022-03-20T21:00:10Z) - An End-to-end Entangled Segmentation and Classification Convolutional
Neural Network for Periodontitis Stage Grading from Periapical Radiographic
Images [0.013002050979054347]
We developed an end-to-end deep learning network HYNETS for grading periodontitis from periapical X-rays.
HyNETS combines a set of segmentation networks and a classification network to provide an end-to-end interpretable solution.
arXiv Detail & Related papers (2021-09-27T15:28:54Z) - A Deep Learning-Based Approach to Extracting Periosteal and Endosteal
Contours of Proximal Femur in Quantitative CT Images [25.76523855274612]
A three-dimensional (3D) end-to-end fully convolutional neural network was developed for our segmentation task.
Two models with the same network structures were trained and they achieved a dice similarity coefficient (DSC) of 97.87% and 96.49% for the periosteal and endosteal contours, respectively.
It demonstrated a strong potential for clinical use, including the hip fracture risk prediction and finite element analysis.
arXiv Detail & Related papers (2021-02-03T10:23:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.