Unsupervised Machine Learning for Osteoporosis Diagnosis Using Singh Index Clustering on Hip Radiographs
- URL: http://arxiv.org/abs/2411.15253v1
- Date: Fri, 22 Nov 2024 08:44:43 GMT
- Title: Unsupervised Machine Learning for Osteoporosis Diagnosis Using Singh Index Clustering on Hip Radiographs
- Authors: Vimaladevi Madhivanan, Kalavakonda Vijaya, Abhay Lal, Senthil Rithika, Shamala Karupusamy Subramaniam, Mohamed Sameer,
- Abstract summary: Singh Index (SI) provides a straightforward, semi-quantitative means of osteoporosis diagnosis through plain hip radiographs.
This study aims to automate SI identification from radiographs using machine learning algorithms.
- Score: 0.0
- License:
- Abstract: Osteoporosis, a prevalent condition among the aging population worldwide, is characterized by diminished bone mass and altered bone structure, increasing susceptibility to fractures. It poses a significant and growing global public health challenge over the next decade. Diagnosis typically involves Dual-energy X-ray absorptiometry to measure bone mineral density, yet its mass screening utility is limited. The Singh Index (SI) provides a straightforward, semi-quantitative means of osteoporosis diagnosis through plain hip radiographs, assessing trabecular patterns in the proximal femur. Although cost-effective and accessible, manual SI calculation is time-intensive and requires expertise. This study aims to automate SI identification from radiographs using machine learning algorithms. An unlabelled dataset of 838 hip X-ray images from Indian adults aged 20-70 was utilized. A custom convolutional neural network architecture was developed for feature extraction, demonstrating superior performance in cluster homogeneity and heterogeneity compared to established models. Various clustering algorithms categorized images into six SI grade clusters, with comparative analysis revealing only two clusters with high Silhouette Scores for promising classification. Further scrutiny highlighted dataset imbalance and emphasized the importance of image quality and additional clinical data availability. The study suggests augmenting X-ray images with patient clinical data and reference images, alongside image pre-processing techniques, to enhance diagnostic accuracy. Additionally, exploring semi-supervised and self-supervised learning methods may mitigate labelling challenges associated with large datasets.
Related papers
- BLS-GAN: A Deep Layer Separation Framework for Eliminating Bone Overlap in Conventional Radiographs [4.295284976294471]
In conventional radiographs, bone overlaps are prevalent, and can impede the accurate assessment of bone characteristics.
This work proposed a Bone Layer Separation GAN (BLS-GAN) framework that can produce high-quality bone layer images.
The generated images passed the visual Turing test, and improved performance in downstream tasks.
arXiv Detail & Related papers (2024-09-11T14:34:17Z) - Beyond Images: An Integrative Multi-modal Approach to Chest X-Ray Report
Generation [47.250147322130545]
Image-to-text radiology report generation aims to automatically produce radiology reports that describe the findings in medical images.
Most existing methods focus solely on the image data, disregarding the other patient information accessible to radiologists.
We present a novel multi-modal deep neural network framework for generating chest X-rays reports by integrating structured patient data, such as vital signs and symptoms, alongside unstructured clinical notes.
arXiv Detail & Related papers (2023-11-18T14:37:53Z) - Leveraging Semi-Supervised Graph Learning for Enhanced Diabetic
Retinopathy Detection [0.0]
Diabetic Retinopathy (DR) is a significant cause of blindness globally, highlighting the urgent need for early detection and effective treatment.
Recent advancements in Machine Learning (ML) techniques have shown promise in DR detection, but the availability of labeled data often limits their performance.
This research proposes a novel Semi-Supervised Graph Learning SSGL algorithm tailored for DR detection.
arXiv Detail & Related papers (2023-09-02T04:42:08Z) - Generation of Anonymous Chest Radiographs Using Latent Diffusion Models
for Training Thoracic Abnormality Classification Systems [7.909848251752742]
Biometric identifiers in chest radiographs hinder the public sharing of such data for research purposes.
This work employs a latent diffusion model to synthesize an anonymous chest X-ray dataset of high-quality class-conditional images.
arXiv Detail & Related papers (2022-11-02T17:43:02Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
We present a novel approach for disease generation in X-rays using a conditional generative adversarial learning.
We generate a corresponding radiology image in a target domain while preserving the identity of the patient.
We then use the generated X-ray image in the target domain to augment our training to improve the detection performance.
arXiv Detail & Related papers (2021-10-25T14:15:57Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Multi-label Thoracic Disease Image Classification with Cross-Attention
Networks [65.37531731899837]
We propose a novel scheme of Cross-Attention Networks (CAN) for automated thoracic disease classification from chest x-ray images.
We also design a new loss function that beyond cross-entropy loss to help cross-attention process and is able to overcome the imbalance between classes and easy-dominated samples within each class.
arXiv Detail & Related papers (2020-07-21T14:37:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.