Causal Representation Learning with Observational Grouping for CXR Classification
- URL: http://arxiv.org/abs/2506.20582v1
- Date: Wed, 25 Jun 2025 16:17:36 GMT
- Title: Causal Representation Learning with Observational Grouping for CXR Classification
- Authors: Rajat Rasal, Avinash Kori, Ben Glocker,
- Abstract summary: Identifiable causal representation learning seeks to uncover the true causal relationships underlying a data generation process.<n>This work introduces the concept of grouping observations to learn identifiable representations for disease classification in chest X-rays via an end-to-end framework.
- Score: 17.11125452239702
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Identifiable causal representation learning seeks to uncover the true causal relationships underlying a data generation process. In medical imaging, this presents opportunities to improve the generalisability and robustness of task-specific latent features. This work introduces the concept of grouping observations to learn identifiable representations for disease classification in chest X-rays via an end-to-end framework. Our experiments demonstrate that these causal representations improve generalisability and robustness across multiple classification tasks when grouping is used to enforce invariance w.r.t race, sex, and imaging views.
Related papers
- AdFair-CLIP: Adversarial Fair Contrastive Language-Image Pre-training for Chest X-rays [31.250542176856907]
We introduce AdFair-CLIP, a novel framework employing adversarial feature intervention to suppress sensitive attributes.<n>We conduct comprehensive experiments on chest X-ray (CXR) datasets, and show that AdFair-CLIP significantly enhances both fairness and diagnostic accuracy.
arXiv Detail & Related papers (2025-06-30T02:19:22Z) - Contrastive Learning with Counterfactual Explanations for Radiology Report Generation [83.30609465252441]
We propose a textbfCountertextbfFactual textbfExplanations-based framework (CoFE) for radiology report generation.
Counterfactual explanations serve as a potent tool for understanding how decisions made by algorithms can be changed by asking what if'' scenarios.
Experiments on two benchmarks demonstrate that leveraging the counterfactual explanations enables CoFE to generate semantically coherent and factually complete reports.
arXiv Detail & Related papers (2024-07-19T17:24:25Z) - Identifiable Latent Neural Causal Models [82.14087963690561]
Causal representation learning seeks to uncover latent, high-level causal representations from low-level observed data.
We determine the types of distribution shifts that do contribute to the identifiability of causal representations.
We translate our findings into a practical algorithm, allowing for the acquisition of reliable latent causal representations.
arXiv Detail & Related papers (2024-03-23T04:13:55Z) - Multi-task Explainable Skin Lesion Classification [54.76511683427566]
We propose a few-shot-based approach for skin lesions that generalizes well with few labelled data.
The proposed approach comprises a fusion of a segmentation network that acts as an attention module and classification network.
arXiv Detail & Related papers (2023-10-11T05:49:47Z) - Inducing Causal Structure for Abstractive Text Summarization [76.1000380429553]
We introduce a Structural Causal Model (SCM) to induce the underlying causal structure of the summarization data.
We propose a Causality Inspired Sequence-to-Sequence model (CI-Seq2Seq) to learn the causal representations that can mimic the causal factors.
Experimental results on two widely used text summarization datasets demonstrate the advantages of our approach.
arXiv Detail & Related papers (2023-08-24T16:06:36Z) - The Role of Subgroup Separability in Group-Fair Medical Image
Classification [18.29079361470428]
We find a relationship between subgroup separability, subgroup disparities, and performance degradation when models are trained on data with systematic bias such as underdiagnosis.
Our findings shed new light on the question of how models become biased, providing important insights for the development of fair medical imaging AI.
arXiv Detail & Related papers (2023-07-06T06:06:47Z) - Visualizing chest X-ray dataset biases using GANs [8.61315908717562]
Recent work demonstrates that images from various chest X-ray datasets contain visual features that are strongly correlated with protected demographic attributes like race and gender.
This finding raises issues of fairness, since some of these factors may be used by downstream algorithms for clinical predictions.
In this work, we propose a framework, using generative adversarial networks (GANs), to visualize what features are most different between X-rays belonging to two demographic subgroups.
arXiv Detail & Related papers (2023-04-29T01:39:08Z) - Learning disentangled representations for explainable chest X-ray
classification using Dirichlet VAEs [68.73427163074015]
This study explores the use of the Dirichlet Variational Autoencoder (DirVAE) for learning disentangled latent representations of chest X-ray (CXR) images.
The predictive capacity of multi-modal latent representations learned by DirVAE models is investigated through implementation of an auxiliary multi-label classification task.
arXiv Detail & Related papers (2023-02-06T18:10:08Z) - Generalizable Information Theoretic Causal Representation [37.54158138447033]
We propose to learn causal representation from observational data by regularizing the learning procedure with mutual information measures according to our hypothetical causal graph.
The optimization involves a counterfactual loss, based on which we deduce a theoretical guarantee that the causality-inspired learning is with reduced sample complexity and better generalization ability.
arXiv Detail & Related papers (2022-02-17T00:38:35Z) - Typing assumptions improve identification in causal discovery [123.06886784834471]
Causal discovery from observational data is a challenging task to which an exact solution cannot always be identified.
We propose a new set of assumptions that constrain possible causal relationships based on the nature of the variables.
arXiv Detail & Related papers (2021-07-22T14:23:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.