AdFair-CLIP: Adversarial Fair Contrastive Language-Image Pre-training for Chest X-rays
- URL: http://arxiv.org/abs/2506.23467v1
- Date: Mon, 30 Jun 2025 02:19:22 GMT
- Title: AdFair-CLIP: Adversarial Fair Contrastive Language-Image Pre-training for Chest X-rays
- Authors: Chenlang Yi, Zizhan Xiong, Qi Qi, Xiyuan Wei, Girish Bathla, Ching-Long Lin, Bobak Jack Mortazavi, Tianbao Yang,
- Abstract summary: We introduce AdFair-CLIP, a novel framework employing adversarial feature intervention to suppress sensitive attributes.<n>We conduct comprehensive experiments on chest X-ray (CXR) datasets, and show that AdFair-CLIP significantly enhances both fairness and diagnostic accuracy.
- Score: 31.250542176856907
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Contrastive Language-Image Pre-training (CLIP) models have demonstrated superior performance across various visual tasks including medical image classification. However, fairness concerns, including demographic biases, have received limited attention for CLIP models. This oversight leads to critical issues, particularly those related to race and gender, resulting in disparities in diagnostic outcomes and reduced reliability for underrepresented groups. To address these challenges, we introduce AdFair-CLIP, a novel framework employing adversarial feature intervention to suppress sensitive attributes, thereby mitigating spurious correlations and improving prediction fairness. We conduct comprehensive experiments on chest X-ray (CXR) datasets, and show that AdFair-CLIP significantly enhances both fairness and diagnostic accuracy, while maintaining robust generalization in zero-shot and few-shot scenarios. These results establish new benchmarks for fairness-aware learning in CLIP-based medical diagnostic models, particularly for CXR analysis.
Related papers
- Uncertainty-Driven Expert Control: Enhancing the Reliability of Medical Vision-Language Models [52.2001050216955]
Existing methods aim to enhance the performance of Medical Vision Language Model (MedVLM) by adjusting model structure, fine-tuning with high-quality data, or through preference fine-tuning.<n>We propose an expert-in-the-loop framework named Expert-Controlled-Free Guidance (Expert-CFG) to align MedVLM with clinical expertise without additional training.
arXiv Detail & Related papers (2025-07-12T09:03:30Z) - Fairness Analysis of CLIP-Based Foundation Models for X-Ray Image Classification [15.98427699337596]
We perform a comprehensive fairness analysis of CLIP-like models applied to X-ray image classification.<n>We assess their performance and fairness across diverse patient demographics and disease categories using zero-shot inference and various fine-tuning techniques.
arXiv Detail & Related papers (2025-01-31T12:23:50Z) - Benchmarking Robustness of Contrastive Learning Models for Medical Image-Report Retrieval [2.9801426627439453]
This study benchmarks the robustness of four state-of-the-art contrastive learning models: CLIP, CXR-RePaiR, MedCLIP, and CXR-CLIP.<n>Our findings reveal that all evaluated models are highly sensitive to out-of-distribution data.<n>By addressing these limitations, we can develop more reliable cross-domain retrieval models for medical applications.
arXiv Detail & Related papers (2025-01-15T20:37:04Z) - FairREAD: Re-fusing Demographic Attributes after Disentanglement for Fair Medical Image Classification [3.615240611746158]
We propose Fair Re-fusion After Disentanglement (FairREAD), a framework that mitigates unfairness by re-integrating sensitive demographic attributes into fair image representations.<n>FairREAD employs adversarial training to disentangle demographic information while using a controlled re-fusion mechanism to preserve clinically relevant details.<n> Comprehensive evaluations on a large-scale clinical X-ray dataset demonstrate that FairREAD significantly reduces unfairness metrics while maintaining diagnostic accuracy.
arXiv Detail & Related papers (2024-12-20T22:17:57Z) - Fair Diagnosis: Leveraging Causal Modeling to Mitigate Medical Bias [14.848344916632024]
In medical image analysis, model predictions can be affected by sensitive attributes, such as race and gender.<n>We present a causal modeling framework, which aims to reduce the impact of sensitive attributes on diagnostic predictions.
arXiv Detail & Related papers (2024-12-06T02:59:36Z) - Fairness Evolution in Continual Learning for Medical Imaging [47.52603262576663]
We study the behavior of Continual Learning (CL) strategies in medical imaging regarding classification performance.
We evaluate the Replay, Learning without Forgetting (LwF), LwF, and Pseudo-Label strategies.
LwF and Pseudo-Label exhibit optimal classification performance, but when including fairness metrics in the evaluation, it is clear that Pseudo-Label is less biased.
arXiv Detail & Related papers (2024-04-10T09:48:52Z) - Looking Beyond What You See: An Empirical Analysis on Subgroup Intersectional Fairness for Multi-label Chest X-ray Classification Using Social Determinants of Racial Health Inequities [4.351859373879489]
Inherited biases in deep learning models can lead to disparities in prediction accuracy across protected groups.
We propose a framework to achieve accurate diagnostic outcomes and ensure fairness across intersectional groups.
arXiv Detail & Related papers (2024-03-27T02:13:20Z) - Vision-Language Modelling For Radiological Imaging and Reports In The
Low Data Regime [70.04389979779195]
This paper explores training medical vision-language models (VLMs) where the visual and language inputs are embedded into a common space.
We explore several candidate methods to improve low-data performance, including adapting generic pre-trained models to novel image and text domains.
Using text-to-image retrieval as a benchmark, we evaluate the performance of these methods with variable sized training datasets of paired chest X-rays and radiological reports.
arXiv Detail & Related papers (2023-03-30T18:20:00Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
We propose ARCO, a semi-supervised contrastive learning framework with stratified group theory for medical image segmentation.
We first propose building ARCO through the concept of variance-reduced estimation and show that certain variance-reduction techniques are particularly beneficial in pixel/voxel-level segmentation tasks.
We experimentally validate our approaches on eight benchmarks, i.e., five 2D/3D medical and three semantic segmentation datasets, with different label settings.
arXiv Detail & Related papers (2023-02-03T13:50:25Z) - Evaluating Probabilistic Classifiers: The Triptych [62.997667081978825]
We propose and study a triptych of diagnostic graphics that focus on distinct and complementary aspects of forecast performance.
The reliability diagram addresses calibration, the receiver operating characteristic (ROC) curve diagnoses discrimination ability, and the Murphy diagram visualizes overall predictive performance and value.
arXiv Detail & Related papers (2023-01-25T19:35:23Z) - Non-Contrastive Learning Meets Language-Image Pre-Training [145.6671909437841]
We study the validity of non-contrastive language-image pre-training (nCLIP)
We introduce xCLIP, a multi-tasking framework combining CLIP and nCLIP, and show that nCLIP aids CLIP in enhancing feature semantics.
arXiv Detail & Related papers (2022-10-17T17:57:46Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
We present a deep learning framework that enables robust modeling in challenging scenarios.
Our results show that using 85% lesser labeled data, we can build predictive models that match the performance of classifiers trained in a large-scale data setting.
arXiv Detail & Related papers (2020-05-03T02:36:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.