AI Assistants to Enhance and Exploit the PETSc Knowledge Base
- URL: http://arxiv.org/abs/2506.20608v1
- Date: Wed, 25 Jun 2025 17:00:05 GMT
- Title: AI Assistants to Enhance and Exploit the PETSc Knowledge Base
- Authors: Barry Smith, Junchao Zhang, Hong Zhang, Lois Curfman McInnes, Murat Keceli, Archit Vasan, Satish Balay, Toby Isaac, Le Chen, Venkatram Vishwanath,
- Abstract summary: Generative AI is transforming how technical knowledge can be accessed, reused, and extended.<n>PETSc has accumulated a rich but fragmented knowledge base over its three decades of development.<n>To activate and utilize this knowledge base more effectively, the PETSc team has begun building an LLM-powered system.
- Score: 5.995494397300258
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative AI, especially through large language models (LLMs), is transforming how technical knowledge can be accessed, reused, and extended. PETSc, a widely used numerical library for high-performance scientific computing, has accumulated a rich but fragmented knowledge base over its three decades of development, spanning source code, documentation, mailing lists, GitLab issues, Discord conversations, technical papers, and more. Much of this knowledge remains informal and inaccessible to users and new developers. To activate and utilize this knowledge base more effectively, the PETSc team has begun building an LLM-powered system that combines PETSc content with custom LLM tools -- including retrieval-augmented generation (RAG), reranking algorithms, and chatbots -- to assist users, support developers, and propose updates to formal documentation. This paper presents initial experiences designing and evaluating these tools, focusing on system architecture, using RAG and reranking for PETSc-specific information, evaluation methodologies for various LLMs and embedding models, and user interface design. Leveraging the Argonne Leadership Computing Facility resources, we analyze how LLM responses can enhance the development and use of numerical software, with an initial focus on scalable Krylov solvers. Our goal is to establish an extensible framework for knowledge-centered AI in scientific software, enabling scalable support, enriched documentation, and enhanced workflows for research and development. We conclude by outlining directions for expanding this system into a robust, evolving platform that advances software ecosystems to accelerate scientific discovery.
Related papers
- LLM4CD: Leveraging Large Language Models for Open-World Knowledge Augmented Cognitive Diagnosis [56.50378080174923]
We propose LLM4CD, which Leverages Large Language Models for Open-World Knowledge Augmented Cognitive Diagnosis.<n>Our method utilizes the open-world knowledge of LLMs to construct cognitively expressive textual representations, which are encoded to introduce rich semantic information into the CD task.<n>This approach substitutes traditional ID embeddings with semantic representations, enabling the model to accommodate new students and exercises with open-world knowledge and address the cold-start problem.
arXiv Detail & Related papers (2025-05-14T14:48:00Z) - Code-Survey: An LLM-Driven Methodology for Analyzing Large-Scale Codebases [3.8153349016958074]
We introduce Code-Survey, the first LLM-driven methodology designed to explore and analyze large-scales.
By carefully designing surveys, Code-Survey transforms unstructured data, such as commits, emails, into organized, structured, and analyzable datasets.
This enables quantitative analysis of complex software evolution and uncovers valuable insights related to design, implementation, maintenance, reliability, and security.
arXiv Detail & Related papers (2024-09-24T17:08:29Z) - A Survey on RAG Meeting LLMs: Towards Retrieval-Augmented Large Language Models [71.25225058845324]
Large Language Models (LLMs) have demonstrated revolutionary abilities in language understanding and generation.
Retrieval-Augmented Generation (RAG) can offer reliable and up-to-date external knowledge.
RA-LLMs have emerged to harness external and authoritative knowledge bases, rather than relying on the model's internal knowledge.
arXiv Detail & Related papers (2024-05-10T02:48:45Z) - Cross-Data Knowledge Graph Construction for LLM-enabled Educational Question-Answering System: A Case Study at HCMUT [2.8000537365271367]
Large language models (LLMs) have emerged as a vibrant research topic.
LLMs face challenges in remembering events, incorporating new information, and addressing domain-specific issues or hallucinations.
This article proposes a method for automatically constructing a Knowledge Graph from multiple data sources.
arXiv Detail & Related papers (2024-04-14T16:34:31Z) - The Future of Scientific Publishing: Automated Article Generation [0.0]
This study introduces a novel software tool leveraging large language model (LLM) prompts, designed to automate the generation of academic articles from Python code.
Python served as a foundational proof of concept; however, the underlying methodology and framework exhibit adaptability across various GitHub repo's.
The development was achieved without reliance on advanced language model agents, ensuring high fidelity in the automated generation of coherent and comprehensive academic content.
arXiv Detail & Related papers (2024-04-11T16:47:02Z) - Generative Software Engineering [23.584814591463406]
We present a literature review of generative tasks in Software engineering using pre-trained models and large language models (LLMs)
LLMs possess powerful language representation and contextual awareness capabilities, enabling them to leverage diverse training data and adapt to generative tasks.
We identify key strengths, weaknesses, and gaps in existing approaches, and propose potential research directions.
arXiv Detail & Related papers (2024-03-05T01:37:37Z) - Lessons from Building StackSpot AI: A Contextualized AI Coding Assistant [2.268415020650315]
A new breed of tools, built atop Large Language Models, is emerging.
These tools aim to mitigate drawbacks by employing techniques like fine-tuning or enriching user prompts with contextualized information.
arXiv Detail & Related papers (2023-11-30T10:51:26Z) - CodeTF: One-stop Transformer Library for State-of-the-art Code LLM [72.1638273937025]
We present CodeTF, an open-source Transformer-based library for state-of-the-art Code LLMs and code intelligence.
Our library supports a collection of pretrained Code LLM models and popular code benchmarks.
We hope CodeTF is able to bridge the gap between machine learning/generative AI and software engineering.
arXiv Detail & Related papers (2023-05-31T05:24:48Z) - The Web Can Be Your Oyster for Improving Large Language Models [98.72358969495835]
Large language models (LLMs) encode a large amount of world knowledge.
We consider augmenting LLMs with the large-scale web using search engine.
We present a web-augmented LLM UNIWEB, which is trained over 16 knowledge-intensive tasks in a unified text-to-text format.
arXiv Detail & Related papers (2023-05-18T14:20:32Z) - Retrieval-Enhanced Machine Learning [110.5237983180089]
We describe a generic retrieval-enhanced machine learning framework, which includes a number of existing models as special cases.
REML challenges information retrieval conventions, presenting opportunities for novel advances in core areas, including optimization.
REML research agenda lays a foundation for a new style of information access research and paves a path towards advancing machine learning and artificial intelligence.
arXiv Detail & Related papers (2022-05-02T21:42:45Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
Development and deployment of machine learning systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end.
We have developed a proven systems engineering approach for machine learning development and deployment.
Our "Machine Learning Technology Readiness Levels" framework defines a principled process to ensure robust, reliable, and responsible systems.
arXiv Detail & Related papers (2021-01-11T15:54:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.