The Future of Scientific Publishing: Automated Article Generation
- URL: http://arxiv.org/abs/2404.17586v1
- Date: Thu, 11 Apr 2024 16:47:02 GMT
- Title: The Future of Scientific Publishing: Automated Article Generation
- Authors: Jeremy R. Harper,
- Abstract summary: This study introduces a novel software tool leveraging large language model (LLM) prompts, designed to automate the generation of academic articles from Python code.
Python served as a foundational proof of concept; however, the underlying methodology and framework exhibit adaptability across various GitHub repo's.
The development was achieved without reliance on advanced language model agents, ensuring high fidelity in the automated generation of coherent and comprehensive academic content.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This study introduces a novel software tool leveraging large language model (LLM) prompts, designed to automate the generation of academic articles from Python code a significant advancement in the fields of biomedical informatics and computer science. Selected for its widespread adoption and analytical versatility, Python served as a foundational proof of concept; however, the underlying methodology and framework exhibit adaptability across various GitHub repo's underlining the tool's broad applicability (Harper 2024). By mitigating the traditionally time-intensive academic writing process, particularly in synthesizing complex datasets and coding outputs, this approach signifies a monumental leap towards streamlining research dissemination. The development was achieved without reliance on advanced language model agents, ensuring high fidelity in the automated generation of coherent and comprehensive academic content. This exploration not only validates the successful application and efficiency of the software but also projects how future integration of LLM agents which could amplify its capabilities, propelling towards a future where scientific findings are disseminated more swiftly and accessibly.
Related papers
- Deep Learning and Machine Learning -- Object Detection and Semantic Segmentation: From Theory to Applications [17.571124565519263]
Book covers state-of-the-art advancements in machine learning and deep learning.
Focuses on convolutional neural networks (CNNs), YOLO architectures, and transformer-based approaches like DETR.
Book also delves into the integration of artificial intelligence (AI) techniques and large language models for enhanced object detection.
arXiv Detail & Related papers (2024-10-21T02:10:49Z) - Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
Retrieval-enhancement can be extended to a broader spectrum of machine learning (ML)
This work introduces a formal framework of this paradigm, Retrieval-Enhanced Machine Learning (REML), by synthesizing the literature in various domains in ML with consistent notations which is missing from the current literature.
The goal of this work is to equip researchers across various disciplines with a comprehensive, formally structured framework of retrieval-enhanced models, thereby fostering interdisciplinary future research.
arXiv Detail & Related papers (2024-07-17T20:01:21Z) - Symbolic Learning Enables Self-Evolving Agents [55.625275970720374]
We introduce agent symbolic learning, a systematic framework that enables language agents to optimize themselves on their own.
Agent symbolic learning is designed to optimize the symbolic network within language agents by mimicking two fundamental algorithms in connectionist learning.
We conduct proof-of-concept experiments on both standard benchmarks and complex real-world tasks.
arXiv Detail & Related papers (2024-06-26T17:59:18Z) - A Data-to-Product Multimodal Conceptual Framework to Achieve Automated Software Evolution for Context-rich Intelligent Applications [0.0]
This study proposes a conceptual framework for achieving automated software evolution.
A Selective Sequential Scope Model (3S) model is developed based on the conceptual framework.
Although the study is about intelligent applications, the framework and analysis methods may be adapted for other types of software as AI brings more intelligence into their life cycles.
arXiv Detail & Related papers (2024-04-07T06:05:25Z) - LVLM-Interpret: An Interpretability Tool for Large Vision-Language Models [50.259006481656094]
We present a novel interactive application aimed towards understanding the internal mechanisms of large vision-language models.
Our interface is designed to enhance the interpretability of the image patches, which are instrumental in generating an answer.
We present a case study of how our application can aid in understanding failure mechanisms in a popular large multi-modal model: LLaVA.
arXiv Detail & Related papers (2024-04-03T23:57:34Z) - Automated Extraction and Maturity Analysis of Open Source Clinical Informatics Repositories from Scientific Literature [0.0]
This study introduces an automated methodology to bridge the gap by systematically extracting GitHub repository URLs from academic papers indexed in arXiv.
Our approach encompasses querying the arXiv API for relevant papers, cleaning extracted GitHub URLs, fetching comprehensive repository information via the GitHub API, and analyzing repository maturity based on defined metrics such as stars, forks, open issues, and contributors.
arXiv Detail & Related papers (2024-03-20T17:06:51Z) - LAMM: Language-Assisted Multi-Modal Instruction-Tuning Dataset,
Framework, and Benchmark [81.42376626294812]
We present Language-Assisted Multi-Modal instruction tuning dataset, framework, and benchmark.
Our aim is to establish LAMM as a growing ecosystem for training and evaluating MLLMs.
We present a comprehensive dataset and benchmark, which cover a wide range of vision tasks for 2D and 3D vision.
arXiv Detail & Related papers (2023-06-11T14:01:17Z) - A Survey on Pretrained Language Models for Neural Code Intelligence [4.020523898765404]
The field of Neural Code Intelligence (NCI) has emerged as a promising solution to tackle analytical tasks on source code.
NCI aims to improve programming efficiency and minimize human errors within the software industry.
Pretrained language models have become a dominant force in NCI research, consistently delivering state-of-the-art results.
arXiv Detail & Related papers (2022-12-20T08:34:56Z) - Automated Creation and Human-assisted Curation of Computable Scientific
Models from Code and Text [2.3746609573239756]
Domain experts cannot gain a complete understanding of the implementation of a scientific model if they are not familiar with the code.
We develop a system for the automated creation and human-assisted curation of scientific models.
We present experimental results obtained using a dataset of code and associated text derived from NASA's Hypersonic Aerodynamics website.
arXiv Detail & Related papers (2022-01-28T17:31:38Z) - pymdp: A Python library for active inference in discrete state spaces [52.85819390191516]
pymdp is an open-source package for simulating active inference in Python.
We provide the first open-source package for simulating active inference with POMDPs.
arXiv Detail & Related papers (2022-01-11T12:18:44Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
Development and deployment of machine learning systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end.
We have developed a proven systems engineering approach for machine learning development and deployment.
Our "Machine Learning Technology Readiness Levels" framework defines a principled process to ensure robust, reliable, and responsible systems.
arXiv Detail & Related papers (2021-01-11T15:54:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.