The Ideation-Execution Gap: Execution Outcomes of LLM-Generated versus Human Research Ideas
- URL: http://arxiv.org/abs/2506.20803v1
- Date: Wed, 25 Jun 2025 19:47:23 GMT
- Title: The Ideation-Execution Gap: Execution Outcomes of LLM-Generated versus Human Research Ideas
- Authors: Chenglei Si, Tatsunori Hashimoto, Diyi Yang,
- Abstract summary: A good idea should not simply appear to be novel, it should also result in better research after being executed.<n>To test whether AI-generated ideas lead to better research outcomes, we conduct an execution study.<n>Comparing the review scores of the same ideas before and after execution, the scores of the LLM-generated ideas decrease significantly more than expert-written ideas.
- Score: 90.26363107905344
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have shown promise in accelerating the scientific research pipeline. A key capability for this process is the ability to generate novel research ideas, and prior studies have found settings in which LLM-generated research ideas were judged as more novel than human-expert ideas. However, a good idea should not simply appear to be novel, it should also result in better research after being executed. To test whether AI-generated ideas lead to better research outcomes, we conduct an execution study by recruiting 43 expert researchers to execute randomly-assigned ideas, either written by experts or generated by an LLM. Each expert spent over 100 hours implementing the idea and wrote a 4-page short paper to document the experiments. All the executed projects are then reviewed blindly by expert NLP researchers. Comparing the review scores of the same ideas before and after execution, the scores of the LLM-generated ideas decrease significantly more than expert-written ideas on all evaluation metrics (novelty, excitement, effectiveness, and overall; p < 0.05), closing the gap between LLM and human ideas observed at the ideation stage. When comparing the aggregated review scores from the execution study, we even observe that for many metrics there is a flip in rankings where human ideas score higher than LLM ideas. This ideation-execution gap highlights the limitations of current LLMs in generating truly effective research ideas and the challenge of evaluating research ideas in the absence of execution outcomes.
Related papers
- Harnessing Large Language Models for Scientific Novelty Detection [49.10608128661251]
We propose to harness large language models (LLMs) for scientific novelty detection (ND)<n>To capture idea conception, we propose to train a lightweight retriever by distilling the idea-level knowledge from LLMs.<n> Experiments show our method consistently outperforms others on the proposed benchmark datasets for idea retrieval and ND tasks.
arXiv Detail & Related papers (2025-05-30T14:08:13Z) - LiveIdeaBench: Evaluating LLMs' Divergent Thinking for Scientific Idea Generation with Minimal Context [13.967898012303325]
We introduce LiveIdeaBench, a benchmark evaluating Large Language Models' scientific idea generation.<n>Our benchmark employs a dynamic panel of state-of-the-art LLMs to assess generated ideas across five key dimensions: originality, feasibility, fluency, flexibility, and clarity.<n>Our results demonstrate that models like QwQ-32B-preview achieve creative performance comparable to top-tier models such as claude-3.7-sonnet:thinking, despite significant gaps in their general intelligence scores.
arXiv Detail & Related papers (2024-12-23T14:13:44Z) - Chain of Ideas: Revolutionizing Research Via Novel Idea Development with LLM Agents [64.64280477958283]
An exponential increase in scientific literature makes it challenging for researchers to stay current with recent advances and identify meaningful research directions.
Recent developments in large language models(LLMs) suggest a promising avenue for automating the generation of novel research ideas.
We propose a Chain-of-Ideas(CoI) agent, an LLM-based agent that organizes relevant literature in a chain structure to effectively mirror the progressive development in a research domain.
arXiv Detail & Related papers (2024-10-17T03:26:37Z) - Good Idea or Not, Representation of LLM Could Tell [86.36317971482755]
We focus on idea assessment, which aims to leverage the knowledge of large language models to assess the merit of scientific ideas.
We release a benchmark dataset from nearly four thousand manuscript papers with full texts, meticulously designed to train and evaluate the performance of different approaches to this task.
Our findings suggest that the representations of large language models hold more potential in quantifying the value of ideas than their generative outputs.
arXiv Detail & Related papers (2024-09-07T02:07:22Z) - Can LLMs Generate Novel Research Ideas? A Large-Scale Human Study with 100+ NLP Researchers [90.26363107905344]
Large language models (LLMs) have sparked optimism about their potential to accelerate scientific discovery.
No evaluations have shown that LLM systems can take the very first step of producing novel, expert-level ideas.
arXiv Detail & Related papers (2024-09-06T08:25:03Z) - ResearchAgent: Iterative Research Idea Generation over Scientific Literature with Large Language Models [56.08917291606421]
ResearchAgent is an AI-based system for ideation and operationalization of novel work.<n>ResearchAgent automatically defines novel problems, proposes methods and designs experiments, while iteratively refining them.<n>We experimentally validate our ResearchAgent on scientific publications across multiple disciplines.
arXiv Detail & Related papers (2024-04-11T13:36:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.