Universal and Efficient Detection of Adversarial Data through Nonuniform Impact on Network Layers
- URL: http://arxiv.org/abs/2506.20816v1
- Date: Wed, 25 Jun 2025 20:30:28 GMT
- Title: Universal and Efficient Detection of Adversarial Data through Nonuniform Impact on Network Layers
- Authors: Furkan Mumcu, Yasin Yilmaz,
- Abstract summary: Deep Neural Networks (DNNs) are notoriously vulnerable to adversarial input designs with limited noise budgets.<n>We show that the existing detection methods are either ineffective against the state-of-the-art attack techniques or computationally inefficient for real-time processing.<n>We propose a novel universal and efficient method to detect adversarial examples by analyzing the varying degrees of impact of attacks on different DNN layers.
- Score: 24.585379549997743
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Deep Neural Networks (DNNs) are notoriously vulnerable to adversarial input designs with limited noise budgets. While numerous successful attacks with subtle modifications to original input have been proposed, defense techniques against these attacks are relatively understudied. Existing defense approaches either focus on improving DNN robustness by negating the effects of perturbations or use a secondary model to detect adversarial data. Although equally important, the attack detection approach, which is studied in this work, provides a more practical defense compared to the robustness approach. We show that the existing detection methods are either ineffective against the state-of-the-art attack techniques or computationally inefficient for real-time processing. We propose a novel universal and efficient method to detect adversarial examples by analyzing the varying degrees of impact of attacks on different DNN layers. {Our method trains a lightweight regression model that predicts deeper-layer features from early-layer features, and uses the prediction error to detect adversarial samples.} Through theoretical arguments and extensive experiments, we demonstrate that our detection method is highly effective, computationally efficient for real-time processing, compatible with any DNN architecture, and applicable across different domains, such as image, video, and audio.
Related papers
- Detecting Adversarial Examples [24.585379549997743]
We propose a novel method to detect adversarial examples by analyzing the layer outputs of Deep Neural Networks (DNNs)<n>Our method trains a lightweight regression model that predicts deeper-layer features from early-layer features, and uses the prediction error to detect adversarial samples.
arXiv Detail & Related papers (2024-10-22T21:42:59Z) - Robust Overfitting Does Matter: Test-Time Adversarial Purification With FGSM [5.592360872268223]
Defense strategies usually train deep neural networks (DNNs) for a specific adversarial attack method and can achieve good robustness in defense against this type of adversarial attack.
However, when subjected to evaluations involving unfamiliar attack modalities, empirical evidence reveals a pronounced deterioration in the robustness of DNNs.
Most defense methods often sacrifice the accuracy of clean examples in order to improve the adversarial robustness of DNNs.
arXiv Detail & Related papers (2024-03-18T03:54:01Z) - Enhancing Adversarial Robustness via Score-Based Optimization [22.87882885963586]
Adversarial attacks have the potential to mislead deep neural network classifiers by introducing slight perturbations.
We introduce a novel adversarial defense scheme named ScoreOpt, which optimize adversarial samples at test-time.
Our experimental results demonstrate that our approach outperforms existing adversarial defenses in terms of both performance and robustness speed.
arXiv Detail & Related papers (2023-07-10T03:59:42Z) - Adversarial Examples Detection with Enhanced Image Difference Features
based on Local Histogram Equalization [20.132066800052712]
We propose an adversarial example detection framework based on a high-frequency information enhancement strategy.
This framework can effectively extract and amplify the feature differences between adversarial examples and normal examples.
arXiv Detail & Related papers (2023-05-08T03:14:01Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
We investigate the vulnerability of flavor tagging algorithms via application of adversarial attacks.
We present an adversarial training strategy that mitigates the impact of such simulated attacks.
arXiv Detail & Related papers (2022-03-25T19:57:19Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
We propose a Model-Agnostic Meta-Attack (MAMA) approach to discover stronger attack algorithms automatically.
Our method learns the in adversarial attacks parameterized by a recurrent neural network.
We develop a model-agnostic training algorithm to improve the ability of the learned when attacking unseen defenses.
arXiv Detail & Related papers (2021-10-13T13:54:24Z) - Searching for an Effective Defender: Benchmarking Defense against
Adversarial Word Substitution [83.84968082791444]
Deep neural networks are vulnerable to intentionally crafted adversarial examples.
Various methods have been proposed to defend against adversarial word-substitution attacks for neural NLP models.
arXiv Detail & Related papers (2021-08-29T08:11:36Z) - Towards Adversarial-Resilient Deep Neural Networks for False Data
Injection Attack Detection in Power Grids [7.351477761427584]
False data injection attacks (FDIAs) pose a significant security threat to power system state estimation.
Recent studies have proposed machine learning (ML) techniques, particularly deep neural networks (DNNs)
arXiv Detail & Related papers (2021-02-17T22:26:34Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
This paper presents a lightweight monitoring architecture based on coverage paradigms to enhance the model against different unsafe inputs.
Experimental results show that the proposed approach is effective in detecting both powerful adversarial examples and out-of-distribution inputs.
arXiv Detail & Related papers (2021-01-28T16:38:26Z) - A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack
and Learning [122.49765136434353]
We present an effective method, called Hamiltonian Monte Carlo with Accumulated Momentum (HMCAM), aiming to generate a sequence of adversarial examples.
We also propose a new generative method called Contrastive Adversarial Training (CAT), which approaches equilibrium distribution of adversarial examples.
Both quantitative and qualitative analysis on several natural image datasets and practical systems have confirmed the superiority of the proposed algorithm.
arXiv Detail & Related papers (2020-10-15T16:07:26Z) - Adversarial Distributional Training for Robust Deep Learning [53.300984501078126]
Adversarial training (AT) is among the most effective techniques to improve model robustness by augmenting training data with adversarial examples.
Most existing AT methods adopt a specific attack to craft adversarial examples, leading to the unreliable robustness against other unseen attacks.
In this paper, we introduce adversarial distributional training (ADT), a novel framework for learning robust models.
arXiv Detail & Related papers (2020-02-14T12:36:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.