FixCLR: Negative-Class Contrastive Learning for Semi-Supervised Domain Generalization
- URL: http://arxiv.org/abs/2506.20841v1
- Date: Wed, 25 Jun 2025 21:25:05 GMT
- Title: FixCLR: Negative-Class Contrastive Learning for Semi-Supervised Domain Generalization
- Authors: Ha Min Son, Shahbaz Rezaei, Xin Liu,
- Abstract summary: Due to label scarcity, applying domain generalization methods often underperform.<n>We introduce FixCLR, which explicitly regularize to learn domains invariant representations across all domains.<n>Our research includes extensive experiments that have not been previously explored in SSDG studies.
- Score: 6.683066713491661
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Semi-supervised domain generalization (SSDG) aims to solve the problem of generalizing to out-of-distribution data when only a few labels are available. Due to label scarcity, applying domain generalization methods often underperform. Consequently, existing SSDG methods combine semi-supervised learning methods with various regularization terms. However, these methods do not explicitly regularize to learn domains invariant representations across all domains, which is a key goal for domain generalization. To address this, we introduce FixCLR. Inspired by success in self-supervised learning, we change two crucial components to adapt contrastive learning for explicit domain invariance regularization: utilization of class information from pseudo-labels and using only a repelling term. FixCLR can also be added on top of most existing SSDG and semi-supervised methods for complementary performance improvements. Our research includes extensive experiments that have not been previously explored in SSDG studies. These experiments include benchmarking different improvements to semi-supervised methods, evaluating the performance of pretrained versus non-pretrained models, and testing on datasets with many domains. Overall, FixCLR proves to be an effective SSDG method, especially when combined with other semi-supervised methods.
Related papers
- Generalize or Detect? Towards Robust Semantic Segmentation Under Multiple Distribution Shifts [56.57141696245328]
In open-world scenarios, where both novel classes and domains may exist, an ideal segmentation model should detect anomaly classes for safety.
Existing methods often struggle to distinguish between domain-level and semantic-level distribution shifts.
arXiv Detail & Related papers (2024-11-06T11:03:02Z) - Domain-Guided Weight Modulation for Semi-Supervised Domain Generalization [11.392783918495404]
We study the challenging problem of semi-supervised domain generalization.
The goal is to learn a domain-generalizable model while using only a small fraction of labeled data and a relatively large fraction of unlabeled data.
We propose a novel method that can facilitate the generation of accurate pseudo-labels under various domain shifts.
arXiv Detail & Related papers (2024-09-04T01:26:23Z) - Towards Generalizing to Unseen Domains with Few Labels [7.002657345547741]
We aim to obtain a model that learns domain-generalizable features by leveraging a limited subset of labelled data.
Existing domain generalization (DG) methods which are unable to exploit unlabeled data perform poorly compared to semi-supervised learning (SSL) methods.
arXiv Detail & Related papers (2024-03-18T11:21:52Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
Source-free domain adaptation (SFDA) aims to adapt a well-trained source model to an unlabelled target domain without accessing the source dataset.
Existing SFDA methods ONLY assess their adapted models on the target training set, neglecting the data from unseen but identically distributed testing sets.
We propose a consistency regularization framework to develop a more generalizable SFDA method.
arXiv Detail & Related papers (2023-08-03T07:45:53Z) - NormAUG: Normalization-guided Augmentation for Domain Generalization [60.159546669021346]
We propose a simple yet effective method called NormAUG (Normalization-guided Augmentation) for deep learning.
Our method introduces diverse information at the feature level and improves the generalization of the main path.
In the test stage, we leverage an ensemble strategy to combine the predictions from the auxiliary path of our model, further boosting performance.
arXiv Detail & Related papers (2023-07-25T13:35:45Z) - Towards domain-invariant Self-Supervised Learning with Batch Styles
Standardization [1.6060199783864477]
Batch Styles Standardization (BSS) is a simple yet powerful method to standardize the style of images in a batch.
We show that BSS significantly improves downstream task performances on unseen domains, often outperforming or rivaling UDG methods.
arXiv Detail & Related papers (2023-03-10T17:09:04Z) - On Certifying and Improving Generalization to Unseen Domains [87.00662852876177]
Domain Generalization aims to learn models whose performance remains high on unseen domains encountered at test-time.
It is challenging to evaluate DG algorithms comprehensively using a few benchmark datasets.
We propose a universal certification framework that can efficiently certify the worst-case performance of any DG method.
arXiv Detail & Related papers (2022-06-24T16:29:43Z) - Semi-Supervised Domain Generalization with Stochastic StyleMatch [90.98288822165482]
In real-world applications, we might have only a few labels available from each source domain due to high annotation cost.
In this work, we investigate semi-supervised domain generalization, a more realistic and practical setting.
Our proposed approach, StyleMatch, is inspired by FixMatch, a state-of-the-art semi-supervised learning method based on pseudo-labeling.
arXiv Detail & Related papers (2021-06-01T16:00:08Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
We propose the first method that aims to simultaneously learn invariant representations and risks under the setting of semi-supervised domain adaptation (Semi-DA)
We introduce the LIRR algorithm for jointly textbfLearning textbfInvariant textbfRepresentations and textbfRisks.
arXiv Detail & Related papers (2020-10-09T15:42:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.