Learning-Based Resource Management in Integrated Sensing and Communication Systems
- URL: http://arxiv.org/abs/2506.20849v1
- Date: Wed, 25 Jun 2025 21:44:07 GMT
- Title: Learning-Based Resource Management in Integrated Sensing and Communication Systems
- Authors: Ziyang Lu, M. Cenk Gursoy, Chilukuri K. Mohan, Pramod K. Varshney,
- Abstract summary: We introduce a novel constrained deep reinforcement learning (CDRL) approach to optimize resource allocation between tracking and communication under time budget constraints.<n>Our numerical results demonstrate the efficiency of our proposed CDRL framework, confirming its ability to maximize communication quality in highly dynamic environments.
- Score: 14.285899538624246
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we tackle the task of adaptive time allocation in integrated sensing and communication systems equipped with radar and communication units. The dual-functional radar-communication system's task involves allocating dwell times for tracking multiple targets and utilizing the remaining time for data transmission towards estimated target locations. We introduce a novel constrained deep reinforcement learning (CDRL) approach, designed to optimize resource allocation between tracking and communication under time budget constraints, thereby enhancing target communication quality. Our numerical results demonstrate the efficiency of our proposed CDRL framework, confirming its ability to maximize communication quality in highly dynamic environments while adhering to time constraints.
Related papers
- Age of Information Minimization in UAV-Enabled Integrated Sensing and Communication Systems [34.92822911897626]
Unmanned aerial vehicles (UAVs) equipped with integrated sensing and communication (ISAC) capabilities are envisioned to play a pivotal role in future wireless networks.<n>We propose Age Information (AoI) system that simultaneously performs target sensing and multi-user communication.
arXiv Detail & Related papers (2025-07-18T18:17:09Z) - Multi-Modal Self-Supervised Semantic Communication [52.76990720898666]
We propose a multi-modal semantic communication system that leverages multi-modal self-supervised learning to enhance task-agnostic feature extraction.<n>The proposed approach effectively captures both modality-invariant and modality-specific features while minimizing training-related communication overhead.<n>The findings underscore the advantages of multi-modal self-supervised learning in semantic communication, paving the way for more efficient and scalable edge inference systems.
arXiv Detail & Related papers (2025-03-18T06:13:02Z) - Joint Adaptive OFDM and Reinforcement Learning Design for Autonomous Vehicles: Leveraging Age of Updates [2.607046313483251]
Millimeter wave (mmWave)-based frequency-division multiplexing (OFDM) stands out as a suitable alternative for high-resolution sensing and high-speed data transmission.<n>In this work, we consider an autonomous vehicle network where an AV utilizes its queue state information (QSI) and channel state information (CSI) in conjunction with reinforcement learning techniques to manage communication and sensing.
arXiv Detail & Related papers (2024-12-24T15:32:58Z) - Semantic Communication for Cooperative Perception using HARQ [51.148203799109304]
We leverage an importance map to distill critical semantic information, introducing a cooperative perception semantic communication framework.
To counter the challenges posed by time-varying multipath fading, our approach incorporates the use of frequency-division multiplexing (OFDM) along with channel estimation and equalization strategies.
We introduce a novel semantic error detection method that is integrated with our semantic communication framework in the spirit of hybrid automatic repeated request (HARQ)
arXiv Detail & Related papers (2024-08-29T08:53:26Z) - Semantic and Effective Communication for Remote Control Tasks with
Dynamic Feature Compression [23.36744348465991]
Coordination of robotic swarms and the remote wireless control of industrial systems are among the major use cases for 5G and beyond systems.
In this work, we consider a prototypal system in which an observer must communicate its sensory data to an actor controlling a task.
We propose an ensemble Vector Quantized Variational Autoencoder (VQ-VAE) encoding, and train a Deep Reinforcement Learning (DRL) agent to dynamically adapt the quantization level.
arXiv Detail & Related papers (2023-01-14T11:43:56Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
Federated learning (FL) as a paradigm of collaborative learning techniques has obtained increasing research attention.
It is of interest to investigate fast responding and accurate FL schemes over wireless systems.
We show that the proposed communication-efficient federated learning framework converges at a strong linear rate.
arXiv Detail & Related papers (2021-10-22T13:25:57Z) - Accelerating Federated Edge Learning via Optimized Probabilistic Device
Scheduling [57.271494741212166]
This paper formulates and solves the communication time minimization problem.
It is found that the optimized policy gradually turns its priority from suppressing the remaining communication rounds to reducing per-round latency as the training process evolves.
The effectiveness of the proposed scheme is demonstrated via a use case on collaborative 3D objective detection in autonomous driving.
arXiv Detail & Related papers (2021-07-24T11:39:17Z) - Deep reinforcement learning of event-triggered communication and control
for multi-agent cooperative transport [9.891241465396098]
We explore a multi-agent reinforcement learning approach to address the design problem of communication and control strategies for cooperative transport.
Our framework exploits event-triggered architecture, namely, a feedback controller that computes the communication input and a triggering mechanism that determines when the input has to be updated again.
arXiv Detail & Related papers (2021-03-29T01:16:12Z) - Path Design and Resource Management for NOMA enhanced Indoor Intelligent
Robots [58.980293789967575]
A communication enabled indoor intelligent robots (IRs) service framework is proposed.
Lego modeling method is proposed, which can deterministically describe the indoor layout and channel state.
The investigated radio map is invoked as a virtual environment to train the reinforcement learning agent.
arXiv Detail & Related papers (2020-11-23T21:45:01Z) - Communication-Efficient and Distributed Learning Over Wireless Networks:
Principles and Applications [55.65768284748698]
Machine learning (ML) is a promising enabler for the fifth generation (5G) communication systems and beyond.
This article aims to provide a holistic overview of relevant communication and ML principles, and thereby present communication-efficient and distributed learning frameworks with selected use cases.
arXiv Detail & Related papers (2020-08-06T12:37:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.