論文の概要: 3DGH: 3D Head Generation with Composable Hair and Face
- arxiv url: http://arxiv.org/abs/2506.20875v1
- Date: Wed, 25 Jun 2025 22:53:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-27 19:53:09.909417
- Title: 3DGH: 3D Head Generation with Composable Hair and Face
- Title(参考訳): 3DGH:構成可能なヘアと顔を備えた3Dヘッドジェネレーション
- Authors: Chengan He, Junxuan Li, Tobias Kirschstein, Artem Sevastopolsky, Shunsuke Saito, Qingyang Tan, Javier Romero, Chen Cao, Holly Rushmeier, Giljoo Nam,
- Abstract要約: 3DGHは、構成可能な毛髪と顔成分を持つ3次元頭部の無条件生成モデルである。
テンプレートベースの3次元ガウススプラッティングを用いた新しいデータ表現を用いて,これらを分離する。
我々は3DGHの設計選択を検証するために広範囲な実験を行い、質的かつ定量的に評価する。
- 参考スコア(独自算出の注目度): 21.770533642873662
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present 3DGH, an unconditional generative model for 3D human heads with composable hair and face components. Unlike previous work that entangles the modeling of hair and face, we propose to separate them using a novel data representation with template-based 3D Gaussian Splatting, in which deformable hair geometry is introduced to capture the geometric variations across different hairstyles. Based on this data representation, we design a 3D GAN-based architecture with dual generators and employ a cross-attention mechanism to model the inherent correlation between hair and face. The model is trained on synthetic renderings using carefully designed objectives to stabilize training and facilitate hair-face separation. We conduct extensive experiments to validate the design choice of 3DGH, and evaluate it both qualitatively and quantitatively by comparing with several state-of-the-art 3D GAN methods, demonstrating its effectiveness in unconditional full-head image synthesis and composable 3D hairstyle editing. More details will be available on our project page: https://c-he.github.io/projects/3dgh/.
- Abstract(参考訳): 3DGHは, 構成可能な毛髪と顔成分を有する3次元頭部の非条件生成モデルである。
毛髪と顔のモデリングを絡み合わせる以前の研究とは違って, 変形可能な毛髪形状を導入し, 異なる毛髪形態の幾何学的変化を捉えるテンプレートベースの3Dガウススプラッティングを用いた新しいデータ表現を用いて, 毛髪と顔のモデリングを分離することを提案する。
このデータ表現に基づいて、2つのジェネレータを持つ3D GANベースのアーキテクチャを設計し、毛髪と顔の相関関係をモデル化するクロスアテンション機構を用いる。
モデルは、トレーニングを安定させ、毛髪と顔の分離を促進するために、慎重に設計された目的を用いて合成レンダリングに基づいて訓練される。
我々は3DGHの設計選択を検証するための広範囲な実験を行い、現状の3D GAN法と比較して質的・定量的に評価し、非条件のフルヘッド画像合成と構成可能な3Dヘアスタイル編集の有効性を実証した。
詳細はプロジェクトのページで確認できる。
関連論文リスト
- Generating Editable Head Avatars with 3D Gaussian GANs [57.51487984425395]
従来の3D-Aware Generative Adversarial Network (GAN) は、フォトリアリスティックでビューに一貫性のある3Dヘッド合成を実現する。
本稿では,3次元ガウススプラッティング(3DGS)を明示的な3次元表現として取り入れることで,3次元ヘッドアバターの編集性とアニメーション制御を向上する手法を提案する。
提案手法は,最先端の制御性を備えた高品質な3D認識合成を実現する。
論文 参考訳(メタデータ) (2024-12-26T10:10:03Z) - Human Hair Reconstruction with Strand-Aligned 3D Gaussians [39.32397354314153]
従来のヘアストランドと3Dガウスの二重表現を用いた新しいヘアモデリング手法を提案する。
ヒトのアバターをモデル化するための非構造ガウス的アプローチとは対照的に,本手法は3Dポリラインや鎖を用いて髪を再構築する。
提案手法はGaussian Haircutと呼ばれ, 合成シーンと実シーンで評価し, ストランドベースヘア再構築作業における最先端性能を実証する。
論文 参考訳(メタデータ) (2024-09-23T07:49:46Z) - Perm: A Parametric Representation for Multi-Style 3D Hair Modeling [22.790597419351528]
Permは、さまざまな毛髪関連の応用を促進するために設計された人間の3D毛髪のパラメトリック表現である。
ヘアテクスチャを低周波・高周波ヘア構造に適合・分解するために,我々のストランド表現を活用している。
論文 参考訳(メタデータ) (2024-07-28T10:05:11Z) - HAAR: Text-Conditioned Generative Model of 3D Strand-based Human
Hairstyles [85.12672855502517]
そこで本研究では,3次元ヘアスタイルのための新しいストランドベース生成モデルであるHAARについて紹介する。
テキスト入力に基づいて、HAARは現代のコンピュータグラフィックスエンジンで生産レベルの資産として使用できる3Dヘアスタイルを生成する。
論文 参考訳(メタデータ) (2023-12-18T19:19:32Z) - Free-HeadGAN: Neural Talking Head Synthesis with Explicit Gaze Control [54.079327030892244]
Free-HeadGANは、人為的なニューラルトーキングヘッド合成システムである。
本研究では,3次元顔のランドマークが不足している顔のモデリングが,最先端の生成性能を達成するのに十分であることを示す。
論文 参考訳(メタデータ) (2022-08-03T16:46:08Z) - Disentangled3D: Learning a 3D Generative Model with Disentangled
Geometry and Appearance from Monocular Images [94.49117671450531]
最先端の3D生成モデルは、合成に神経的な3Dボリューム表現を使用するGANである。
本稿では,単分子観察だけで物体の絡み合ったモデルを学ぶことができる3D GANを設計する。
論文 参考訳(メタデータ) (2022-03-29T22:03:18Z) - DRaCoN -- Differentiable Rasterization Conditioned Neural Radiance
Fields for Articulated Avatars [92.37436369781692]
フルボディの体積アバターを学習するためのフレームワークであるDRaCoNを提案する。
2Dと3Dのニューラルレンダリング技術の利点を利用する。
挑戦的なZJU-MoCapとHuman3.6Mデータセットの実験は、DRaCoNが最先端の手法より優れていることを示している。
論文 参考訳(メタデータ) (2022-03-29T17:59:15Z) - i3DMM: Deep Implicit 3D Morphable Model of Human Heads [115.19943330455887]
本報告では,頭部の3次元形態素モデル(i3DMM)について述べる。
顔の形状、テクスチャ、表情を識別するだけでなく、髪を含む頭部全体をモデル化する。
アブレーション研究,最先端モデルとの比較,セマンティックヘッド編集やテクスチャ転送などの応用を用いて,i3DMMの利点を示す。
論文 参考訳(メタデータ) (2020-11-28T15:01:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。