Omniwise: Predicting GPU Kernels Performance with LLMs
- URL: http://arxiv.org/abs/2506.20886v1
- Date: Wed, 25 Jun 2025 23:36:44 GMT
- Title: Omniwise: Predicting GPU Kernels Performance with LLMs
- Authors: Zixian Wang, Cole Ramos, Muhammad A. Awad, Keith Lowery,
- Abstract summary: We introduce Omniwise, the first end-to-end, self-supervised fine-tuning pipeline that applies large language models (LLMs) to GPU kernel performance prediction.<n>It can predict key performance metrics, including memory bandwidth, cache hit rates, GFLOPs, and arithmetic intensity, directly from kernel code without the need for code execution or profiling tools.<n>Our approach achieves over 90% of predictions within 10% relative error on GPU kernels executed on AMD MI250 and MI300X architectures.
- Score: 0.06666419797034795
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, the rapid advancement of deep neural networks (DNNs) has revolutionized artificial intelligence, enabling models with unprecedented capabilities in understanding, generating, and processing complex data. These powerful architectures have transformed a wide range of downstream applications, tackling tasks beyond human reach. In this paper, we introduce Omniwise, the first end-to-end, self-supervised fine-tuning pipeline that applies large language models (LLMs) to GPU kernel performance prediction--a novel use case in performance profiling. Omniwise is model-agnostic and lightweight, achieving strong results even with a small 3B-parameter model. It can predict key performance metrics, including memory bandwidth, cache hit rates, GFLOPs, and arithmetic intensity, directly from kernel code without the need for code execution or profiling tools. Our approach achieves over 90% of predictions within 10% relative error on GPU kernels executed on AMD MI250 and MI300X architectures. In addition to the pipeline, we develop an online inference server and a Visual Studio Code plugin that seamlessly integrate LLM-based performance prediction into developers' workflows.
Related papers
- NGPU-LM: GPU-Accelerated N-Gram Language Model for Context-Biasing in Greedy ASR Decoding [54.88765757043535]
This work rethinks data structures for statistical n-gram language models to enable fast and parallel operations for GPU-optimized inference.<n>Our approach, named NGPU-LM, introduces customizable greedy decoding for all major ASR model types with less than 7% computational overhead.<n>The proposed approach can eliminate more than 50% of the accuracy gap between greedy and beam search for out-of-domain scenarios while avoiding significant slowdown caused by beam search.
arXiv Detail & Related papers (2025-05-28T20:43:10Z) - Pangu Ultra MoE: How to Train Your Big MoE on Ascend NPUs [111.69640966866059]
Sparse large language models (LLMs) with Mixture of Experts (MoE) and close to a trillion parameters are dominating the realm of most capable language models.<n>In this paper, we aim to uncover a recipe to harness such scale on Ascend NPUs.<n>The key goals are better usage of the computing resources under the dynamic sparse model structures and materializing the expected performance gain on the actual hardware.
arXiv Detail & Related papers (2025-05-07T15:46:36Z) - Can Large Language Models Predict Parallel Code Performance? [1.5221392705893568]
This paper explores whether Large Language Models (LLMs) can offer an alternative approach for GPU performance prediction without relying on hardware.<n>LLMs have a strong understanding of the Roofline model, achieving 100% classification accuracy when provided with explicit profiling data.<n>Our findings suggest that with better datasets and prompt strategies, LLMs could become practical tools for HPC roofline analysis and performance portability.
arXiv Detail & Related papers (2025-05-06T21:41:20Z) - EPS-MoE: Expert Pipeline Scheduler for Cost-Efficient MoE Inference [49.94169109038806]
This paper introduces EPS-MoE, a novel expert pipeline scheduler for MoE that surpasses the existing parallelism schemes.<n>Our results demonstrate at most 52.4% improvement in prefill throughput compared to existing parallel inference methods.
arXiv Detail & Related papers (2024-10-16T05:17:49Z) - Enabling High-Sparsity Foundational Llama Models with Efficient Pretraining and Deployment [56.44025052765861]
Large language models (LLMs) have revolutionized Natural Language Processing (NLP), but their size creates computational bottlenecks.
We introduce a novel approach to create accurate, sparse foundational versions of performant LLMs.
We show a total speedup on CPUs for sparse-quantized LLaMA models of up to 8.6x.
arXiv Detail & Related papers (2024-05-06T16:03:32Z) - Optimal Kernel Tuning Parameter Prediction using Deep Sequence Models [0.44998333629984877]
We propose a methodology that uses deep sequence- to-sequence models to predict the optimal tuning parameters governing compute kernels.
The proposed algorithm can achieve more than 90% accuracy on various convolutional kernels in MIOpen, the AMD machine learning primitives library.
arXiv Detail & Related papers (2024-04-15T22:25:54Z) - FusionAI: Decentralized Training and Deploying LLMs with Massive
Consumer-Level GPUs [57.12856172329322]
We envision a decentralized system unlocking the potential vast untapped consumer-level GPU.
This system faces critical challenges, including limited CPU and GPU memory, low network bandwidth, the variability of peer and device heterogeneity.
arXiv Detail & Related papers (2023-09-03T13:27:56Z) - ParaGraph: Weighted Graph Representation for Performance Optimization of
HPC Kernels [1.304892050913381]
We introduce a new graph-based program representation for parallel applications that extends the Abstract Syntax Tree.
We evaluate our proposed representation by training a Graph Neural Network (GNN) to predict the runtime of an OpenMP code region.
Results show that our approach is indeed effective and has normalized RMSE as low as 0.004 to at most 0.01 in its runtime predictions.
arXiv Detail & Related papers (2023-04-07T05:52:59Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency.
We present an IPU-optimized release of our custom SNN Python package, snnTorch.
arXiv Detail & Related papers (2022-11-19T15:44:08Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
High-dimension parameter model and large-scale mathematical calculation restrict execution efficiency, especially for Internet of Things (IoT) devices.
We propose a new Deep Reinforcement Learning (DRL)-Soft Actor Critic for discrete (SAC-d), which generates the emphexit point, emphexit point, and emphcompressing bits by soft policy iterations.
Based on the latency and accuracy aware reward design, such an computation can well adapt to the complex environment like dynamic wireless channel and arbitrary processing, and is capable of supporting the 5G URL
arXiv Detail & Related papers (2022-01-09T09:31:50Z) - Toward Accurate Platform-Aware Performance Modeling for Deep Neural
Networks [0.17499351967216337]
We provide a machine learning-based method, PerfNetV2, which improves the accuracy of our previous work for modeling the neural network performance on a variety of GPU accelerators.
Given an application, the proposed method can be used to predict the inference time and training time of the convolutional neural networks used in the application.
Our case studies show that PerfNetV2 yields a mean absolute percentage error within 13.1% on LeNet, AlexNet, and VGG16 on NVIDIA GTX-1080Ti, while the error rate on a previous work published in ICBD 2018 could be as large as 200%.
arXiv Detail & Related papers (2020-12-01T01:42:23Z) - Performance Aware Convolutional Neural Network Channel Pruning for
Embedded GPUs [6.035819238203187]
We show that a reduction in the number of convolutional channels, pruning 12% of the initial size, is in some cases detrimental to performance.
We also find examples where performance-aware pruning achieves the intended results, with performance speedups of 3x with cuDNN and above 10x with Arm Compute Library and TVM.
arXiv Detail & Related papers (2020-02-20T12:07:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.