論文の概要: LLM-guided Chemical Process Optimization with a Multi-Agent Approach
- arxiv url: http://arxiv.org/abs/2506.20921v2
- Date: Thu, 16 Oct 2025 15:31:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-17 16:37:10.415169
- Title: LLM-guided Chemical Process Optimization with a Multi-Agent Approach
- Title(参考訳): マルチエージェントアプローチによるLCM誘導化学プロセス最適化
- Authors: Tong Zeng, Srivathsan Badrinarayanan, Janghoon Ock, Cheng-Kai Lai, Amir Barati Farimani,
- Abstract要約: 本稿では,最小限のプロセス記述から動作制約を自律的に推論するマルチエージェントLLMフレームワークを提案する。
当社のAutoGenベースのフレームワークは、制約生成、パラメータ検証、シミュレーション、最適化ガイダンスのための特別なエージェントを備えたOpenAIのo3モデルを採用しています。
- 参考スコア(独自算出の注目度): 8.714038047141202
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Chemical process optimization maximizes production efficiency and economic performance, but optimization algorithms, including gradient-based solvers, numerical methods, and parameter grid searches, become impractical when operating constraints are ill-defined or unavailable. We present a multi-agent LLM framework that autonomously infers operating constraints from minimal process descriptions, then collaboratively guides optimization. Our AutoGen-based framework employs OpenAI's o3 model with specialized agents for constraint generation, parameter validation, simulation, and optimization guidance. Through autonomous constraint generation and iterative multi-agent optimization, the framework eliminates the need for predefined operational bounds. Validated on hydrodealkylation across cost, yield, and yield-to-cost ratio metrics, the framework achieved competitive performance with conventional methods while reducing wall-time 31-fold relative to grid search, converging in under 20 minutes. The reasoning-guided search demonstrates sophisticated process understanding, correctly identifying utility trade-offs and applying domain-informed heuristics. Unlike conventional methods requiring predefined constraints, our approach uniquely combines autonomous constraint generation with interpretable parameter exploration. Model comparison reveals reasoning-capable architectures (o3, o1) are essential for successful optimization, while standard models fail to converge. This approach is particularly valuable for emerging processes and retrofit applications where operational constraints are poorly characterized or unavailable.
- Abstract(参考訳): 化学プロセスの最適化は生産効率と経済性能を最大化するが、勾配に基づく解法、数値解法、パラメータグリッド探索を含む最適化アルゴリズムは、運転制約が未定義または使用不能である場合に非実用的となる。
本稿では,最小限のプロセス記述から自律的に動作制約を推測し,協調的に最適化を導くマルチエージェントLLMフレームワークを提案する。
当社のAutoGenベースのフレームワークは、制約生成、パラメータ検証、シミュレーション、最適化ガイダンスのための特別なエージェントを備えたOpenAIのo3モデルを採用しています。
自律的制約生成と反復的マルチエージェント最適化により、フレームワークは事前に定義された操作境界の必要性を排除する。
本フレームワークは, コスト, 収率, 利得-利得比の測定値間での水素化脱アルキル化を検証し, 従来の手法と競合し, グリッドサーチと比較して壁面31倍の時間を短縮し, 20分以内で収束した。
推論誘導探索は、洗練されたプロセス理解を示し、ユーティリティトレードオフを正しく識別し、ドメインインフォームドヒューリスティックを適用する。
事前定義された制約を必要とする従来の手法とは異なり、我々の手法は自律的制約生成と解釈可能なパラメータ探索を一意に組み合わせている。
モデル比較は、標準的なモデルが収束しない間に、推論可能なアーキテクチャ(o3, o1)が最適化の成功に不可欠であることを明らかにしている。
このアプローチは、運用上の制約が不十分であるか、あるいは利用できないような、新興プロセスや再適合アプリケーションにとって特に有用である。
関連論文リスト
- Novel Multi-Agent Action Masked Deep Reinforcement Learning for General Industrial Assembly Lines Balancing Problems [1.8434042562191815]
本稿では,マルコフ決定過程 (MDP) として定式化された汎用産業組立ラインの数学的モデルを提案する。
提案モデルは,タスクとリソーススケジューリングを最適化するために,深層強化学習(DRL)エージェントを訓練するための仮想環境を構築するために使用される。
論文 参考訳(メタデータ) (2025-07-22T14:34:36Z) - Preference Optimization for Combinatorial Optimization Problems [54.87466279363487]
強化学習(Reinforcement Learning, RL)は、ニューラルネットワーク最適化のための強力なツールとして登場した。
大幅な進歩にもかかわらず、既存のRLアプローチは報酬信号の減少や大規模な行動空間における非効率な探索といった課題に直面している。
統計的比較モデルを用いて定量的報酬信号を定性的選好信号に変換する新しい手法であるPreference Optimizationを提案する。
論文 参考訳(メタデータ) (2025-05-13T16:47:00Z) - DeclareAligner: A Leap Towards Efficient Optimal Alignments for Declarative Process Model Conformance Checking [1.4064491732635231]
本稿では,AIパスフィニング手法であるA*探索アルゴリズムを用いた新しいアルゴリズムであるDeclareAlignerを紹介する。
提案手法は,8,054個の合成および実寿命アライメント問題を用いて評価し,最適アライメントを効率的に計算できることを実証した。
論文 参考訳(メタデータ) (2025-03-13T15:49:29Z) - Towards more Contextual Agents: An extractor-Generator Optimization Framework [0.0]
LLM(Large Language Model)ベースのエージェントは、幅広い汎用アプリケーションにわたる複雑なタスクの解決に顕著な成功を収めている。
しかしながら、それらのパフォーマンスは、専門産業や研究領域のようなコンテキスト固有のシナリオで劣化することが多い。
この課題に対処するため,本研究では,LLMエージェントの文脈適応性を高めるための体系的アプローチを提案する。
論文 参考訳(メタデータ) (2025-02-18T15:07:06Z) - Neural Horizon Model Predictive Control -- Increasing Computational Efficiency with Neural Networks [0.0]
予測制御をモデル化するための機械学習支援手法を提案する。
安全保証を維持しつつ,問題地平線の一部を近似することを提案する。
提案手法は,迅速な制御応答を必要とするアプリケーションを含む,幅広いアプリケーションに適用可能である。
論文 参考訳(メタデータ) (2024-08-19T08:13:37Z) - DiffuSolve: Diffusion-based Solver for Non-convex Trajectory Optimization [9.28162057044835]
最適軌道局所は非線形および高次元力学系において計算コストが高い。
本稿では,非次元オプティマ問題に対するDiffuに基づく一般モデルを提案する。
また,新たな制約付き拡散モデルであるDiff+を提案する。
論文 参考訳(メタデータ) (2024-02-22T03:52:17Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
機械学習における予測-Then-Forecast(PtO)パラダイムは、下流の意思決定品質を最大化することを目的としている。
本稿では,PtO法を拡張して,OWA(Nondifferentiable Ordered Weighted Averaging)の目的を最適化する。
この結果から,不確実性の下でのOWA関数の最適化とパラメトリック予測を効果的に統合できることが示唆された。
論文 参考訳(メタデータ) (2024-02-12T16:33:35Z) - Maximize to Explore: One Objective Function Fusing Estimation, Planning,
and Exploration [87.53543137162488]
我々はtextttMEX というオンライン強化学習(オンラインRL)フレームワークを提案する。
textttMEXは、自動的に探索エクスプロイトのバランスをとりながら、見積もりと計画コンポーネントを統合する。
様々な MuJoCo 環境では,ベースラインを安定的なマージンで上回り,十分な報酬を得られる。
論文 参考訳(メタデータ) (2023-05-29T17:25:26Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
1つの典型的な戦略はアルゴリズムのアンローリングであり、これは反復解法の操作による自動微分に依存している。
本稿では,非ロール最適化の後方通過に関する理論的知見を提供し,効率よく解けるバックプロパゲーション解析モデルを生成するシステムに繋がる。
論文 参考訳(メタデータ) (2023-01-28T01:50:42Z) - A Surrogate Objective Framework for Prediction+Optimization with Soft
Constraints [29.962390392493507]
SPO+や直接最適化のような決定に焦点をあてた予測手法が、このギャップを埋めるために提案されている。
本稿では,実世界の線形および半定値負の二次計画問題に対して,解析的に微分可能な主観的フレームワークを提案する。
論文 参考訳(メタデータ) (2021-11-22T17:09:57Z) - Faster Algorithm and Sharper Analysis for Constrained Markov Decision
Process [56.55075925645864]
制約付き意思決定プロセス (CMDP) の問題点について検討し, エージェントは, 複数の制約を条件として, 期待される累積割引報酬を最大化することを目的とする。
新しいユーティリティ・デュアル凸法は、正規化ポリシー、双対正則化、ネステロフの勾配降下双対という3つの要素の新たな統合によって提案される。
これは、凸制約を受ける全ての複雑性最適化に対して、非凸CMDP問題が$mathcal O (1/epsilon)$の低い境界に達する最初の実演である。
論文 参考訳(メタデータ) (2021-10-20T02:57:21Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
セキュリティに制約のある最適電力フロー(SCOPF)は、電力システムの基本である。
SCOPF問題におけるAPRのモデル化は、複雑な大規模混合整数プログラムをもたらす。
本稿では,ディープラーニングとロバスト最適化を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2020-07-14T12:38:21Z) - Global Optimization of Gaussian processes [52.77024349608834]
少数のデータポイントで学習したガウス過程を訓練した空間定式化を提案する。
このアプローチはまた、より小さく、計算的にもより安価なサブソルバを低いバウンディングに導く。
提案手法の順序の順序による時間収束を,総じて低減する。
論文 参考訳(メタデータ) (2020-05-21T20:59:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。