End-to-End Portfolio Optimization with Quantum Annealing
- URL: http://arxiv.org/abs/2504.08843v1
- Date: Thu, 10 Apr 2025 21:31:30 GMT
- Title: End-to-End Portfolio Optimization with Quantum Annealing
- Authors: Sai Nandan Morapakula, Sangram Deshpande, Rakesh Yata, Rushikesh Ubale, Uday Wad, Kazuki Ikeda,
- Abstract summary: Using hybrid quantum-classical models, the study shows combined approaches effectively handle complex optimization better than classical methods.<n> Empirical results demonstrate a portfolio increase of 200,000 Indian Rupees over the benchmark.
- Score: 0.48516757555267037
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: With rapid technological progress reshaping the financial industry, quantum technology plays a critical role in advancing risk management, asset allocation, and financial strategies. Realizing its full potential requires overcoming challenges like quantum hardware limits, algorithmic stability, and implementation barriers. This research explores integrating quantum annealing with portfolio optimization, highlighting quantum methods' ability to enhance investment strategy efficiency and speed. Using hybrid quantum-classical models, the study shows combined approaches effectively handle complex optimization better than classical methods. Empirical results demonstrate a portfolio increase of 200,000 Indian Rupees over the benchmark. Additionally, using rebalancing leads to a portfolio that also surpasses the benchmark value.
Related papers
- Quantum-Inspired Portfolio Optimization In The QUBO Framework [0.0]
A quantum-inspired optimization approach is proposed to study the portfolio optimization aimed at selecting an optimal mix of assets.
This research contributes to the growing body of literature on quantum-inspired techniques in finance, demonstrating its potential as a useful tool for asset allocation and portfolio management.
arXiv Detail & Related papers (2024-10-08T11:36:43Z) - A Comprehensive Review of Quantum Circuit Optimization: Current Trends and Future Directions [0.0]
It reviews state-of-the-art approaches, including analytical algorithms, strategies, machine learning based methods, and hybrid quantum-classical frameworks.<n>The paper highlights the strengths and limitations of each method, along with the challenges they pose.
arXiv Detail & Related papers (2024-08-16T15:07:51Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Deep Reinforcement Learning and Mean-Variance Strategies for Responsible Portfolio Optimization [49.396692286192206]
We study the use of deep reinforcement learning for responsible portfolio optimization by incorporating ESG states and objectives.
Our results show that deep reinforcement learning policies can provide competitive performance against mean-variance approaches for responsible portfolio allocation.
arXiv Detail & Related papers (2024-03-25T12:04:03Z) - Cost Explosion for Efficient Reinforcement Learning Optimisation of
Quantum Circuits [55.616364225463066]
Reinforcement Learning (RL) is a recent approach for learning strategies to optimise quantum circuits by increasing the reward of an optimisation agent.
Our goal is to improve the agent's optimization strategy, by including hints about how quantum circuits are optimized manually.
We show that allowing cost explosions offers significant advantages for RL training, such as reaching optimum circuits.
arXiv Detail & Related papers (2023-11-21T10:16:03Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - Multi-disk clutch optimization using quantum annealing [34.82692226532414]
We develop a new quantum algorithm to solve a problem with significant practical relevance in clutch manufacturing.
It is demonstrated how quantum optimization can play a role in real industrial applications in the manufacturing sector.
arXiv Detail & Related papers (2022-08-11T16:34:51Z) - Dynamic Asset Allocation with Expected Shortfall via Quantum Annealing [0.0]
We propose a hybrid quantum-classical algorithm to solve a dynamic asset allocation problem.
We compare the results from D-Wave's 2000Q and Advantage quantum annealers using real-world financial data.
Experiments on assets with higher correlations tend to perform better, which may help to design practical quantum applications in the near term.
arXiv Detail & Related papers (2021-12-06T17:39:43Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Quantum walk-based portfolio optimisation [0.0]
This paper proposes a highly efficient quantum algorithm for portfolio optimisation targeted at near-term noisy intermediate-scale quantum computers.
Recent work by Hodson et al. explored potential application of hybrid quantum-classical algorithms to the problem of financial portfolio rebalancing.
arXiv Detail & Related papers (2020-11-16T16:11:33Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Hybrid quantum-classical optimization for financial index tracking [0.0]
Tracking a financial index boils down to replicating its trajectory of returns for a well-defined time span by investing in a subset of the securities included in the benchmark.
Picking the optimal combination of assets becomes a challenging weighted-hard problem even for moderately large indices consisting of dozens or hundreds of assets.
We introduce a pruning algorithm to find weighted combinations of assets subject to cardinality constraints.
arXiv Detail & Related papers (2020-08-27T10:59:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.