PhysRig: Differentiable Physics-Based Skinning and Rigging Framework for Realistic Articulated Object Modeling
- URL: http://arxiv.org/abs/2506.20936v2
- Date: Fri, 27 Jun 2025 14:58:56 GMT
- Title: PhysRig: Differentiable Physics-Based Skinning and Rigging Framework for Realistic Articulated Object Modeling
- Authors: Hao Zhang, Haolan Xu, Chun Feng, Varun Jampani, Narendra Ahuja,
- Abstract summary: Skinning and rigging are fundamental components in animation, articulated object reconstruction, motion transfer, and 4D generation.<n>Existing approaches predominantly rely on Linear Blend Skinning (LBS), due to its simplicity and differentiability.<n>We propose PhysRig: a differentiable physics-based skinning and rigging framework.
- Score: 36.27177429446227
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Skinning and rigging are fundamental components in animation, articulated object reconstruction, motion transfer, and 4D generation. Existing approaches predominantly rely on Linear Blend Skinning (LBS), due to its simplicity and differentiability. However, LBS introduces artifacts such as volume loss and unnatural deformations, and it fails to model elastic materials like soft tissues, fur, and flexible appendages (e.g., elephant trunks, ears, and fatty tissues). In this work, we propose PhysRig: a differentiable physics-based skinning and rigging framework that overcomes these limitations by embedding the rigid skeleton into a volumetric representation (e.g., a tetrahedral mesh), which is simulated as a deformable soft-body structure driven by the animated skeleton. Our method leverages continuum mechanics and discretizes the object as particles embedded in an Eulerian background grid to ensure differentiability with respect to both material properties and skeletal motion. Additionally, we introduce material prototypes, significantly reducing the learning space while maintaining high expressiveness. To evaluate our framework, we construct a comprehensive synthetic dataset using meshes from Objaverse, The Amazing Animals Zoo, and MixaMo, covering diverse object categories and motion patterns. Our method consistently outperforms traditional LBS-based approaches, generating more realistic and physically plausible results. Furthermore, we demonstrate the applicability of our framework in the pose transfer task highlighting its versatility for articulated object modeling.
Related papers
- Half-Physics: Enabling Kinematic 3D Human Model with Physical Interactions [88.01918532202716]
We introduce a novel approach that embeds SMPL-X into a tangible entity capable of dynamic physical interactions with its surroundings.<n>Our approach maintains kinematic control over inherent SMPL-X poses while ensuring physically plausible interactions with scenes and objects.<n>Unlike reinforcement learning-based methods, which demand extensive and complex training, our half-physics method is learning-free and generalizes to any body shape and motion.
arXiv Detail & Related papers (2025-07-31T17:58:33Z) - PhysGaia: A Physics-Aware Dataset of Multi-Body Interactions for Dynamic Novel View Synthesis [62.283499219361595]
PhysGaia is a physics-aware dataset specifically designed for Dynamic Novel View Synthesis (DyNVS)<n>Our dataset provides complex dynamic scenarios with rich interactions among multiple objects.<n>PhysGaia will significantly advance research in dynamic view synthesis, physics-based scene understanding, and deep learning models integrated with physical simulation.
arXiv Detail & Related papers (2025-06-03T12:19:18Z) - D-Garment: Physics-Conditioned Latent Diffusion for Dynamic Garment Deformations [9.991827725035373]
Garment dynamics influence geometric details such as wrinkling patterns, which depend on physical input including the wearer's body shape and motion, as well as cloth material features.<n>We propose here a learning-based approach trained on data generated with a physics-based simulator.
arXiv Detail & Related papers (2025-04-04T14:18:06Z) - PhysTwin: Physics-Informed Reconstruction and Simulation of Deformable Objects from Videos [21.441062722848265]
PhysTwin is a novel framework that uses sparse videos of dynamic objects under interaction to produce a photo- and physically realistic, real-time interactive replica.<n>Our approach centers on two key components: (1) a physics-informed representation that combines spring-mass models for realistic physical simulation, and generative shape models for geometry, and Gaussian splats for rendering.<n>Our method integrates an inverse physics framework with visual perception cues, enabling high-fidelity reconstruction even from partial, occluded, and limited viewpoints.
arXiv Detail & Related papers (2025-03-23T07:49:19Z) - PhysMotion: Physics-Grounded Dynamics From a Single Image [24.096925413047217]
We introduce PhysMotion, a novel framework that leverages principled physics-based simulations to guide intermediate 3D representations generated from a single image and input conditions.<n>Our approach addresses the limitations of traditional data-driven generative models and result in more consistent physically plausible motions.
arXiv Detail & Related papers (2024-11-26T07:59:11Z) - PhyRecon: Physically Plausible Neural Scene Reconstruction [81.73129450090684]
We introduce PHYRECON, the first approach to leverage both differentiable rendering and differentiable physics simulation to learn implicit surface representations.
Central to this design is an efficient transformation between SDF-based implicit representations and explicit surface points.
Our results also exhibit superior physical stability in physical simulators, with at least a 40% improvement across all datasets.
arXiv Detail & Related papers (2024-04-25T15:06:58Z) - REACTO: Reconstructing Articulated Objects from a Single Video [64.89760223391573]
We propose a novel deformation model that enhances the rigidity of each part while maintaining flexible deformation of the joints.
Our method outperforms previous works in producing higher-fidelity 3D reconstructions of general articulated objects.
arXiv Detail & Related papers (2024-04-17T08:01:55Z) - Fine-grained differentiable physics: a yarn-level model for fabrics [33.01541119342456]
Differentiable physics modeling combines physics models with gradient-based learning to provide model explicability and data efficiency.
We propose a new differentiable fabrics model for composite materials such as cloths.
arXiv Detail & Related papers (2022-02-01T16:01:01Z) - Real-time Deep Dynamic Characters [95.5592405831368]
We propose a deep videorealistic 3D human character model displaying highly realistic shape, motion, and dynamic appearance.
We use a novel graph convolutional network architecture to enable motion-dependent deformation learning of body and clothing.
We show that our model creates motion-dependent surface deformations, physically plausible dynamic clothing deformations, as well as video-realistic surface textures at a much higher level of detail than previous state of the art approaches.
arXiv Detail & Related papers (2021-05-04T23:28:55Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
We focus on the integration of incomplete physics models into deep generative models.
We propose a VAE architecture in which a part of the latent space is grounded by physics.
We demonstrate generative performance improvements over a set of synthetic and real-world datasets.
arXiv Detail & Related papers (2021-02-25T20:28:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.