Detection of Breast Cancer Lumpectomy Margin with SAM-incorporated Forward-Forward Contrastive Learning
- URL: http://arxiv.org/abs/2506.21006v1
- Date: Thu, 26 Jun 2025 04:46:28 GMT
- Title: Detection of Breast Cancer Lumpectomy Margin with SAM-incorporated Forward-Forward Contrastive Learning
- Authors: Tyler Ward, Xiaoqin Wang, Braxton McFarland, Md Atik Ahamed, Sahar Nozad, Talal Arshad, Hafsa Nebbache, Jin Chen, Abdullah Imran,
- Abstract summary: We propose a novel deep learning framework combining the Segment Anything Model (SAM) with Forward-Forward Contrastive Learning (FFCL)<n>Our approach achieved an AUC of 0.8455 for margin classification and segmented margins with a 27.4% improvement over baseline models, while reducing inference time to 47 milliseconds per image.
- Score: 4.066789590650407
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Complete removal of cancer tumors with a negative specimen margin during lumpectomy is essential in reducing breast cancer recurrence. However, 2D specimen radiography (SR), the current method used to assess intraoperative specimen margin status, has limited accuracy, resulting in nearly a quarter of patients requiring additional surgery. To address this, we propose a novel deep learning framework combining the Segment Anything Model (SAM) with Forward-Forward Contrastive Learning (FFCL), a pre-training strategy leveraging both local and global contrastive learning for patch-level classification of SR images. After annotating SR images with regions of known maligancy, non-malignant tissue, and pathology-confirmed margins, we pre-train a ResNet-18 backbone with FFCL to classify margin status, then reconstruct coarse binary masks to prompt SAM for refined tumor margin segmentation. Our approach achieved an AUC of 0.8455 for margin classification and segmented margins with a 27.4% improvement in Dice similarity over baseline models, while reducing inference time to 47 milliseconds per image. These results demonstrate that FFCL-SAM significantly enhances both the speed and accuracy of intraoperative margin assessment, with strong potential to reduce re-excision rates and improve surgical outcomes in breast cancer treatment. Our code is available at https://github.com/tbwa233/FFCL-SAM/.
Related papers
- Intraoperative Glioma Segmentation with YOLO + SAM for Improved Accuracy in Tumor Resection [1.9461727843485295]
Gliomas present significant surgical challenges due to similarity to healthy tissue.
MRI images are often ineffective during surgery due to factors such as brain shift.
This paper presents a deep learning pipeline combining You Only Look Once Version 8 (Yv8) and Segment Anything Model Vision Transformer-base.
arXiv Detail & Related papers (2024-08-27T07:58:08Z) - Evaluating the Impact of Sequence Combinations on Breast Tumor Segmentation in Multiparametric MRI [0.0]
The effect of sequence combinations in mpMRI remains under-investigated.
The nnU-Net model using DCE sequences achieved a Dice similarity coefficient (DSC) of 0.69 $pm$ 0.18 for functional tumor volume (FTV) segmentation.
arXiv Detail & Related papers (2024-06-12T02:09:05Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
Grading plays a vital role in breast cancer treatment planning.
The current tumor grading method involves extracting tissue from patients, leading to stress, discomfort, and high medical costs.
This paper examines using optimized CDI$s$ to improve breast cancer grade prediction.
arXiv Detail & Related papers (2024-05-13T15:48:26Z) - Using Multiparametric MRI with Optimized Synthetic Correlated Diffusion Imaging to Enhance Breast Cancer Pathologic Complete Response Prediction [71.91773485443125]
Neoadjuvant chemotherapy has recently gained popularity as a promising treatment strategy for breast cancer.
The current process to recommend neoadjuvant chemotherapy relies on the subjective evaluation of medical experts.
This research investigates the application of optimized CDI$s$ to enhance breast cancer pathologic complete response prediction.
arXiv Detail & Related papers (2024-05-13T15:40:56Z) - Intra-operative tumour margin evaluation in breast-conserving surgery with deep learning [0.8488455943441636]
The aim of proposed scheme was a potential procedure in the intra-operative measurement system.
Deep learning techniques can draw results consistent with pathology reports.
arXiv Detail & Related papers (2024-04-16T14:26:55Z) - Mask-Enhanced Segment Anything Model for Tumor Lesion Semantic Segmentation [48.107348956719775]
We introduce Mask-Enhanced SAM (M-SAM), an innovative architecture tailored for 3D tumor lesion segmentation.
We propose a novel Mask-Enhanced Adapter (MEA) within M-SAM that enriches the semantic information of medical images with positional data from coarse segmentation masks.
Our M-SAM achieves high segmentation accuracy and also exhibits robust generalization.
arXiv Detail & Related papers (2024-03-09T13:37:02Z) - SimPLe: Similarity-Aware Propagation Learning for Weakly-Supervised
Breast Cancer Segmentation in DCE-MRI [4.689359813220365]
The segmentation of cancerous regions is essential for the subsequent analysis of breast MRI.
We propose a weakly-supervised strategy using extreme points as annotations for breast cancer segmentation.
Experimental results demonstrate our method effectively fine-tunes the network by using the SimPLe strategy.
arXiv Detail & Related papers (2023-06-29T06:22:50Z) - Cancer-Net BCa-S: Breast Cancer Grade Prediction using Volumetric Deep
Radiomic Features from Synthetic Correlated Diffusion Imaging [82.74877848011798]
The prevalence of breast cancer continues to grow, affecting about 300,000 females in the United States in 2023.
The gold-standard Scarff-Bloom-Richardson (SBR) grade has been shown to consistently indicate a patient's response to chemotherapy.
In this paper, we study the efficacy of deep learning for breast cancer grading based on synthetic correlated diffusion (CDI$s$) imaging.
arXiv Detail & Related papers (2023-04-12T15:08:34Z) - Boundary Guided Semantic Learning for Real-time COVID-19 Lung Infection
Segmentation System [69.40329819373954]
The coronavirus disease 2019 (COVID-19) continues to have a negative impact on healthcare systems around the world.
At the current stage, automatically segmenting the lung infection area from CT images is essential for the diagnosis and treatment of COVID-19.
We propose a boundary guided semantic learning network (BSNet) in this paper.
arXiv Detail & Related papers (2022-09-07T05:01:38Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Synthesizing lesions using contextual GANs improves breast cancer
classification on mammograms [0.4297070083645048]
We present a novel generative adversarial network (GAN) model for data augmentation that can realistically synthesize and remove lesions on mammograms.
With self-attention and semi-supervised learning components, the U-net-based architecture can generate high resolution (256x256px) outputs.
arXiv Detail & Related papers (2020-05-29T21:23:00Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
The aim of this work is to develop an accurate automatic segmentation method based on deep learning models for the myocardial borders on LGE-MRI.
A total number of 320 exams (with a mean number of 6 slices per exam) were used for training and 28 exams used for testing.
The performance analysis of the proposed ensemble model in the basal and middle slices was similar as compared to intra-observer study and slightly lower at apical slices.
arXiv Detail & Related papers (2020-05-27T20:44:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.