Intra-operative tumour margin evaluation in breast-conserving surgery with deep learning
- URL: http://arxiv.org/abs/2404.10600v1
- Date: Tue, 16 Apr 2024 14:26:55 GMT
- Title: Intra-operative tumour margin evaluation in breast-conserving surgery with deep learning
- Authors: Wei-Chung Shia, Yu-Len Huang, Yi-Chun Chen, Hwa-Koon Wu, Dar-Ren Chen,
- Abstract summary: The aim of proposed scheme was a potential procedure in the intra-operative measurement system.
Deep learning techniques can draw results consistent with pathology reports.
- Score: 0.8488455943441636
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: A positive margin may result in an increased risk of local recurrences after breast retention surgery for any malignant tumour. In order to reduce the number of positive margins would offer surgeon real-time intra-operative information on the presence of positive resection margins. This study aims to design an intra-operative tumour margin evaluation scheme by using specimen mammography in breast-conserving surgery. Total of 30 cases were evaluated and compared with the manually determined contours by experienced physicians and pathology report. The proposed method utilizes image thresholding to extract regions of interest and then performs a deep learning model, i.e. SegNet, to segment tumour tissue. The margin width of normal tissues surrounding it is evaluated as the result. The desired size of margin around the tumor was set for 10 mm. The smallest average difference to manual sketched margin (6.53 mm +- 5.84). In the all case, the SegNet architecture was utilized to obtain tissue specimen boundary and tumor contour, respectively. The simulation results indicated that this technology is helpful in discriminating positive from negative margins in the intra-operative setting. The aim of proposed scheme was a potential procedure in the intra-operative measurement system. The experimental results reveal that deep learning techniques can draw results that are consistent with pathology reports.
Related papers
- Detection of Breast Cancer Lumpectomy Margin with SAM-incorporated Forward-Forward Contrastive Learning [4.066789590650407]
We propose a novel deep learning framework combining the Segment Anything Model (SAM) with Forward-Forward Contrastive Learning (FFCL)<n>Our approach achieved an AUC of 0.8455 for margin classification and segmented margins with a 27.4% improvement over baseline models, while reducing inference time to 47 milliseconds per image.
arXiv Detail & Related papers (2025-06-26T04:46:28Z) - Brain Tumor Segmentation (BraTS) Challenge 2024: Meningioma Radiotherapy Planning Automated Segmentation [47.119513326344126]
The BraTS-MEN-RT challenge aims to advance automated segmentation algorithms using the largest known multi-institutional dataset of radiotherapy planning brain MRIs.
Each case includes a defaced 3D post-contrast T1-weighted radiotherapy planning MRI in its native acquisition space.
Target volume annotations adhere to established radiotherapy planning protocols.
arXiv Detail & Related papers (2024-05-28T17:25:43Z) - Lumbar Spine Tumor Segmentation and Localization in T2 MRI Images Using AI [2.9746083684997418]
This study introduces a novel data augmentation technique, aimed at automating spine tumor segmentation and localization through AI approaches.
A Convolutional Neural Network (CNN) architecture is employed for tumor classification. 3D vertebral segmentation and labeling techniques are used to help pinpoint the exact location of the tumors in the lumbar spine.
Results indicate a remarkable performance, with 99% accuracy for tumor segmentation, 98% accuracy for tumor classification, and 99% accuracy for tumor localization achieved with the proposed approach.
arXiv Detail & Related papers (2024-05-07T05:55:50Z) - Mask-Enhanced Segment Anything Model for Tumor Lesion Semantic Segmentation [48.107348956719775]
We introduce Mask-Enhanced SAM (M-SAM), an innovative architecture tailored for 3D tumor lesion segmentation.
We propose a novel Mask-Enhanced Adapter (MEA) within M-SAM that enriches the semantic information of medical images with positional data from coarse segmentation masks.
Our M-SAM achieves high segmentation accuracy and also exhibits robust generalization.
arXiv Detail & Related papers (2024-03-09T13:37:02Z) - Spatio-spectral classification of hyperspectral images for brain cancer
detection during surgical operations [0.0]
Surgery for brain cancer is a major problem in neurosurgery.
The identification of the tumor boundaries during surgery is challenging.
This study presents the development of a novel classification method taking into account the spatial and spectral characteristics of the hyperspectral images.
arXiv Detail & Related papers (2024-02-11T12:58:42Z) - Segmentation-based Assessment of Tumor-Vessel Involvement for Surgical
Resectability Prediction of Pancreatic Ductal Adenocarcinoma [1.880228463170355]
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with limited treatment options.
This research proposes a workflow and deep learning-based segmentation models to automatically assess tumor-vessel involvement.
arXiv Detail & Related papers (2023-10-01T10:39:38Z) - Segmentation of glioblastomas in early post-operative multi-modal MRI
with deep neural networks [33.51490233427579]
Two state-of-the-art neural network architectures for pre-operative segmentation were trained for the task.
The best performance achieved was a 61% Dice score, and the best classification performance was about 80% balanced accuracy.
The predicted segmentations can be used to accurately classify the patients into those with residual tumor, and those with gross total resection.
arXiv Detail & Related papers (2023-04-18T10:14:45Z) - Cancer-Net BCa-S: Breast Cancer Grade Prediction using Volumetric Deep
Radiomic Features from Synthetic Correlated Diffusion Imaging [82.74877848011798]
The prevalence of breast cancer continues to grow, affecting about 300,000 females in the United States in 2023.
The gold-standard Scarff-Bloom-Richardson (SBR) grade has been shown to consistently indicate a patient's response to chemotherapy.
In this paper, we study the efficacy of deep learning for breast cancer grading based on synthetic correlated diffusion (CDI$s$) imaging.
arXiv Detail & Related papers (2023-04-12T15:08:34Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Multi-Scale Input Strategies for Medulloblastoma Tumor Classification
using Deep Transfer Learning [59.30734371401316]
Medulloblastoma is the most common malignant brain cancer among children.
CNN has shown promising results for MB subtype classification.
We study the impact of tile size and input strategy.
arXiv Detail & Related papers (2021-09-14T09:42:37Z) - Systematic Clinical Evaluation of A Deep Learning Method for Medical
Image Segmentation: Radiosurgery Application [48.89674088331313]
We systematically evaluate a Deep Learning (DL) method in a 3D medical image segmentation task.
Our method is integrated into the radiosurgery treatment process and directly impacts the clinical workflow.
arXiv Detail & Related papers (2021-08-21T16:15:40Z) - ESTAN: Enhanced Small Tumor-Aware Network for Breast Ultrasound Image
Segmentation [0.0]
We propose a novel deep neural network architecture, namely Enhanced Small Tumor-Aware Network (ESTAN) to accurately segment breast tumors.
ESTAN introduces two encoders to extract and fuse image context information at different scales and utilizes row-column-wise kernels in the encoder to adapt to breast anatomy.
arXiv Detail & Related papers (2020-09-27T16:42:59Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
The aim of this work is to develop an accurate automatic segmentation method based on deep learning models for the myocardial borders on LGE-MRI.
A total number of 320 exams (with a mean number of 6 slices per exam) were used for training and 28 exams used for testing.
The performance analysis of the proposed ensemble model in the basal and middle slices was similar as compared to intra-observer study and slightly lower at apical slices.
arXiv Detail & Related papers (2020-05-27T20:44:38Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
We propose a novel deep learning architecture called Small Tumor-Aware Network (STAN) to improve the performance of segmenting tumors with different size.
The proposed approach outperformed the state-of-the-art approaches in segmenting small breast tumors.
arXiv Detail & Related papers (2020-02-03T22:25:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.