LASFNet: A Lightweight Attention-Guided Self-Modulation Feature Fusion Network for Multimodal Object Detection
- URL: http://arxiv.org/abs/2506.21018v1
- Date: Thu, 26 Jun 2025 05:32:33 GMT
- Title: LASFNet: A Lightweight Attention-Guided Self-Modulation Feature Fusion Network for Multimodal Object Detection
- Authors: Lei Hao, Lina Xu, Chang Liu, Yanni Dong,
- Abstract summary: We propose a new fusion detection baseline that uses a single feature-level fusion unit to enable high-performance detection.<n>Based on this approach, we propose a lightweight attention-guided self-modulation feature fusion network (LASFNet)<n>Our approach achieves a favorable efficiency-accuracy trade-off, reducing the number of parameters and computational cost by as much as 90% and 85%, respectively.
- Score: 4.2649265429416445
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Effective deep feature extraction via feature-level fusion is crucial for multimodal object detection. However, previous studies often involve complex training processes that integrate modality-specific features by stacking multiple feature-level fusion units, leading to significant computational overhead. To address this issue, we propose a new fusion detection baseline that uses a single feature-level fusion unit to enable high-performance detection, thereby simplifying the training process. Based on this approach, we propose a lightweight attention-guided self-modulation feature fusion network (LASFNet), which introduces a novel attention-guided self-modulation feature fusion (ASFF) module that adaptively adjusts the responses of fusion features at both global and local levels based on attention information from different modalities, thereby promoting comprehensive and enriched feature generation. Additionally, a lightweight feature attention transformation module (FATM) is designed at the neck of LASFNet to enhance the focus on fused features and minimize information loss. Extensive experiments on three representative datasets demonstrate that, compared to state-of-the-art methods, our approach achieves a favorable efficiency-accuracy trade-off, reducing the number of parameters and computational cost by as much as 90% and 85%, respectively, while improving detection accuracy (mAP) by 1%-3%. The code will be open-sourced at https://github.com/leileilei2000/LASFNet.
Related papers
- MSCA-Net:Multi-Scale Context Aggregation Network for Infrared Small Target Detection [0.1759252234439348]
This paper proposes a network architecture named MSCA-Net, which integrates three key components.<n>MSEDA employs a multi-scale feature fusion attention mechanism to adaptively aggregate information across different scales.<n>PCBAM captures the correlation between global and local features through a correlation matrix-based strategy.<n> CAB enhances the representation of critical features by assigning greater weights to them, integrating both low-level and high-level information.
arXiv Detail & Related papers (2025-03-21T14:42:31Z) - LoFLAT: Local Feature Matching using Focused Linear Attention Transformer [36.53651224633837]
We propose the LoFLAT, a novel Local Feature matching using Focused Linear Attention Transformer.
Our LoFLAT consists of three main modules: the Feature Extraction Module, the Feature Transformer Module, and the Matching Module.
The proposed LoFLAT outperforms the LoFTR method in terms of both efficiency and accuracy.
arXiv Detail & Related papers (2024-10-30T05:38:07Z) - SeaDATE: Remedy Dual-Attention Transformer with Semantic Alignment via Contrast Learning for Multimodal Object Detection [18.090706979440334]
Multimodal object detection leverages diverse modal information to enhance the accuracy and robustness of detectors.
Current methods merely stack Transformer-guided fusion techniques without exploring their capability to extract features at various depth layers of network.
In this paper, we introduce an accurate and efficient object detection method named SeaDATE.
arXiv Detail & Related papers (2024-10-15T07:26:39Z) - PVAFN: Point-Voxel Attention Fusion Network with Multi-Pooling Enhancing for 3D Object Detection [59.355022416218624]
integration of point and voxel representations is becoming more common in LiDAR-based 3D object detection.
We propose a novel two-stage 3D object detector, called Point-Voxel Attention Fusion Network (PVAFN)
PVAFN uses a multi-pooling strategy to integrate both multi-scale and region-specific information effectively.
arXiv Detail & Related papers (2024-08-26T19:43:01Z) - Salient Object Detection in Optical Remote Sensing Images Driven by
Transformer [69.22039680783124]
We propose a novel Global Extraction Local Exploration Network (GeleNet) for Optical Remote Sensing Images (ORSI-SOD)
Specifically, GeleNet first adopts a transformer backbone to generate four-level feature embeddings with global long-range dependencies.
Extensive experiments on three public datasets demonstrate that the proposed GeleNet outperforms relevant state-of-the-art methods.
arXiv Detail & Related papers (2023-09-15T07:14:43Z) - MLF-DET: Multi-Level Fusion for Cross-Modal 3D Object Detection [54.52102265418295]
We propose a novel and effective Multi-Level Fusion network, named as MLF-DET, for high-performance cross-modal 3D object DETection.
For the feature-level fusion, we present the Multi-scale Voxel Image fusion (MVI) module, which densely aligns multi-scale voxel features with image features.
For the decision-level fusion, we propose the lightweight Feature-cued Confidence Rectification (FCR) module, which exploits image semantics to rectify the confidence of detection candidates.
arXiv Detail & Related papers (2023-07-18T11:26:02Z) - CDDFuse: Correlation-Driven Dual-Branch Feature Decomposition for
Multi-Modality Image Fusion [138.40422469153145]
We propose a novel Correlation-Driven feature Decomposition Fusion (CDDFuse) network.
We show that CDDFuse achieves promising results in multiple fusion tasks, including infrared-visible image fusion and medical image fusion.
arXiv Detail & Related papers (2022-11-26T02:40:28Z) - Transformer-based Network for RGB-D Saliency Detection [82.6665619584628]
Key to RGB-D saliency detection is to fully mine and fuse information at multiple scales across the two modalities.
We show that transformer is a uniform operation which presents great efficacy in both feature fusion and feature enhancement.
Our proposed network performs favorably against state-of-the-art RGB-D saliency detection methods.
arXiv Detail & Related papers (2021-12-01T15:53:58Z) - Multi-View Adaptive Fusion Network for 3D Object Detection [14.506796247331584]
3D object detection based on LiDAR-camera fusion is becoming an emerging research theme for autonomous driving.
We propose a single-stage multi-view fusion framework that takes LiDAR bird's-eye view, LiDAR range view and camera view images as inputs for 3D object detection.
We design an end-to-end learnable network named MVAF-Net to integrate these two components.
arXiv Detail & Related papers (2020-11-02T00:06:01Z) - Global Context-Aware Progressive Aggregation Network for Salient Object
Detection [117.943116761278]
We propose a novel network named GCPANet to integrate low-level appearance features, high-level semantic features, and global context features.
We show that the proposed approach outperforms the state-of-the-art methods both quantitatively and qualitatively.
arXiv Detail & Related papers (2020-03-02T04:26:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.