論文の概要: MT2-CSD: A New Dataset and Multi-Semantic Knowledge Fusion Method for Conversational Stance Detection
- arxiv url: http://arxiv.org/abs/2506.21053v1
- Date: Thu, 26 Jun 2025 06:59:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-27 19:53:10.009519
- Title: MT2-CSD: A New Dataset and Multi-Semantic Knowledge Fusion Method for Conversational Stance Detection
- Title(参考訳): MT2-CSD:会話スタンス検出のための新しいデータセットとマルチセマンティック知識融合法
- Authors: Fuqiang Niu, Genan Dai, Yisha Lu, Jiayu Liao, Xiang Li, Hu Huang, Bowen Zhang,
- Abstract要約: MT2-CSDは,多目的・多ターン会話姿勢検出のための包括的データセットである。
これらの課題に対処するため,Large Language Model enhanced Conversational Attention Network (LLM-CRAN)を提案する。
- 参考スコア(独自算出の注目度): 5.892386683874131
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the realm of contemporary social media, automatic stance detection is pivotal for opinion mining, as it synthesizes and examines user perspectives on contentious topics to uncover prevailing trends and sentiments. Traditional stance detection research often targets individual instances, thereby limiting its capacity to model multi-party discussions typical in real social media scenarios. This shortcoming largely stems from the scarcity of datasets that authentically capture the dynamics of social media interactions, hindering advancements in conversational stance detection. In this paper, we introduce MT2-CSD, a comprehensive dataset for multi-target, multi-turn conversational stance detection. To the best of our knowledge, MT2-CSD is the largest dataset available for this purpose, comprising 24,457 annotated instances and exhibiting the greatest conversational depth, thereby presenting new challenges for stance detection. To address these challenges, we propose the Large Language model enhanced Conversational Relational Attention Network (LLM-CRAN), which exploits the reasoning capabilities of LLMs to improve conversational understanding. We conduct extensive experiments to evaluate the efficacy of LLM-CRAN on the MT2-CSD dataset. The experimental results indicate that LLM-CRAN significantly outperforms strong baseline models in the task of conversational stance detection.
- Abstract(参考訳): 現代のソーシャルメディアの領域では、意見マイニングにおいて自動姿勢検出が重要である。
従来のスタンス検出研究は個々のインスタンスをターゲットにしており、実際のソーシャルメディアのシナリオで典型的なマルチパーティの議論をモデル化する能力を制限する。
この欠点は、ソーシャルメディアのインタラクションのダイナミクスを的確に捉え、会話の姿勢検出の進歩を妨げるデータセットの不足に大きく起因している。
本稿では,マルチターゲット・マルチターン会話姿勢検出のための包括的データセットMT2-CSDを提案する。
我々の知る限り、MT2-CSDはこの目的のために利用可能な最大のデータセットであり、24,457の注釈付きインスタンスで構成され、最大の会話深度を示し、スタンス検出のための新しい課題を示す。
これらの課題に対処するために,Large Language model enhanced Conversational Relational Attention Network (LLM-CRAN)を提案する。
MT2-CSDデータセット上でLLM-CRANの有効性を評価するため,広範囲な実験を行った。
実験結果から,LLM-CRANは会話姿勢検出のタスクにおいて,強いベースラインモデルよりも優れていたことが示唆された。
関連論文リスト
- REALTALK: A 21-Day Real-World Dataset for Long-Term Conversation [51.97224538045096]
本稿では、21日間のメッセージアプリ対話のコーパスであるREALTALKを紹介する。
EI属性とペルソナの整合性を比較し,現実世界の対話による課題を理解する。
その結果,モデルでは対話履歴のみからユーザをシミュレートすることが困難であり,特定のユーザチャットの微調整はペルソナのエミュレーションを改善することがわかった。
論文 参考訳(メタデータ) (2025-02-18T20:29:01Z) - Multimodal Fusion with LLMs for Engagement Prediction in Natural Conversation [70.52558242336988]
我々は,不関心や混乱の兆候を検出することを目的として,言語的および非言語的手がかりを精査することにより,ダイアディック的相互作用における係り合いを予測することに焦点を当てた。
本研究では,カジュアルなダイアディック会話に携わる34人の参加者を対象に,各会話の最後に自己報告されたエンゲージメント評価を行うデータセットを収集する。
大規模言語モデル(LLMs)を用いた新たな融合戦略を導入し,複数行動モダリティをマルチモーダル・トランスクリプトに統合する。
論文 参考訳(メタデータ) (2024-09-13T18:28:12Z) - Multimodal Multi-turn Conversation Stance Detection: A Challenge Dataset and Effective Model [9.413870182630362]
我々は,MmMtCSDと呼ばれるマルチモーダル対話姿勢検出データセットを導入する。
本稿では,テキストおよび視覚的モーダルから共同姿勢表現を学習する,多モーダルな大規模言語モデル姿勢検出フレームワーク(MLLM-SD)を提案する。
MmMtCSD実験は,マルチモーダル姿勢検出のためのMLLM-SD手法の最先端性能を示す。
論文 参考訳(メタデータ) (2024-09-01T03:16:30Z) - A Challenge Dataset and Effective Models for Conversational Stance Detection [26.208989232347058]
マルチターン会話姿勢検出データセット(textbfMT-CSD)を導入する。
本稿では,会話データに固有の長距離および短距離の依存関係に対処するグローバルローカルアテンションネットワーク(textbfGLAN)を提案する。
私たちのデータセットは、ドメイン間スタンス検出の進歩を触媒する貴重なリソースとして役立ちます。
論文 参考訳(メタデータ) (2024-03-17T08:51:01Z) - Enhancing HOI Detection with Contextual Cues from Large Vision-Language Models [56.257840490146]
ConCueは、HOI検出における視覚的特徴抽出を改善するための新しいアプローチである。
コンテクストキューをインスタンスと相互作用検出器の両方に統合するマルチトウワーアーキテクチャを用いたトランスフォーマーベースの特徴抽出モジュールを開発した。
論文 参考訳(メタデータ) (2023-11-26T09:11:32Z) - Stance Detection with Collaborative Role-Infused LLM-Based Agents [39.75103353173015]
スタンス検出は、ウェブおよびソーシャルメディア研究におけるコンテンツ分析に不可欠である。
しかし、姿勢検出には、著者の暗黙の視点を推測する高度な推論が必要である。
LLMを異なる役割に指定した3段階のフレームワークを設計する。
複数のデータセットにまたがって最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-10-16T14:46:52Z) - Re-mine, Learn and Reason: Exploring the Cross-modal Semantic
Correlations for Language-guided HOI detection [57.13665112065285]
ヒューマンオブジェクトインタラクション(HOI)検出は、コンピュータビジョンの課題である。
本稿では,構造化テキスト知識を組み込んだHOI検出フレームワークを提案する。
論文 参考訳(メタデータ) (2023-07-25T14:20:52Z) - SpokenWOZ: A Large-Scale Speech-Text Benchmark for Spoken Task-Oriented Dialogue Agents [70.08842857515141]
SpokenWOZは音声TODのための大規模音声テキストデータセットである。
SpokenWOZでは、クロスターンスロットと推論スロット検出が新たな課題である。
論文 参考訳(メタデータ) (2023-05-22T13:47:51Z) - Exploring Multi-Modal Representations for Ambiguity Detection &
Coreference Resolution in the SIMMC 2.0 Challenge [60.616313552585645]
会話型AIにおける効果的なあいまいさ検出と参照解決のためのモデルを提案する。
具体的には,TOD-BERTとLXMERTをベースとしたモデルを用いて,多数のベースラインと比較し,アブレーション実験を行う。
以上の結果から,(1)言語モデルでは曖昧さを検出するためにデータの相関を活用でき,(2)言語モデルではビジョンコンポーネントの必要性を回避できることがわかった。
論文 参考訳(メタデータ) (2022-02-25T12:10:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。