Quantum Adaptive Search: A Hybrid Quantum-Classical Algorithm for Global Optimization of Multivariate Functions
- URL: http://arxiv.org/abs/2506.21124v1
- Date: Thu, 26 Jun 2025 09:55:36 GMT
- Title: Quantum Adaptive Search: A Hybrid Quantum-Classical Algorithm for Global Optimization of Multivariate Functions
- Authors: G. Intoccia, U. Chirico, V. Schiano Di Cola, G. Pepe, S. Cuomo,
- Abstract summary: Quantum Adaptive Search (QAGS) is a hybrid quantum-classical algorithm for the global optimization of multivariate functions.<n>Results show that QAGS achieves higher accuracy while offering advantages in both time and space complexity.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work presents Quantum Adaptive Search (QAGS), a hybrid quantum-classical algorithm for the global optimization of multivariate functions. The method employs an adaptive mechanism that dynamically narrows the search space based on a quantum-estimated probability distribution of the objective function. A quantum state encodes information about solution quality through an appropriate complex amplitude mapping, enabling the identification of the most promising regions, and thus progressively tightening the search bounds; then a classical optimizer performs local refinement of the solution. The analysis demonstrates that QAGS ensures a contraction of the search space toward global optima, with controlled computational complexity. The numerical results on the benchmark functions show that, compared to the classical methods, QAGS achieves higher accuracy while offering advantages in both time and space complexity.
Related papers
- Application of Langevin Dynamics to Advance the Quantum Natural Gradient Optimization Algorithm [47.47843839099175]
A Quantum Natural Gradient (QNG) algorithm for optimization of variational quantum circuits has been proposed recently.<n>Momentum-QNG is more effective to escape local minima and plateaus in the variational parameter space.
arXiv Detail & Related papers (2024-09-03T15:21:16Z) - A Monte Carlo Tree Search approach to QAOA: finding a needle in the haystack [0.0]
variational quantum algorithms (VQAs) are a promising family of hybrid quantum-classical methods tailored to cope with the limited capability of near-term quantum hardware.<n>We show that leveraging regular parameter patterns deeply affects the decision-tree structure and allows for a flexible and noise-resilient optimization strategy.
arXiv Detail & Related papers (2024-08-22T18:00:02Z) - Quantum Global Minimum Finder based on Variational Quantum Search [0.0]
We introduce the Quantum Global Finder (QGMF), an innovative computing approach that efficiently identifies minima.<n>QGMF combines binary techniques to locate position and then employs a Variational Search to locate minima.
arXiv Detail & Related papers (2024-05-01T11:08:26Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Continuous optimization by quantum adaptive distribution search [0.7332146059733189]
We introduce the quantum adaptive distribution search (QuADS)
QuADS integrates Grover adaptive search (GAS) with the covariance matrix adaptation - evolution strategy (CMA-ES)
numerical experiments show that QuADS outperforms both GAS and CMA-ES.
arXiv Detail & Related papers (2023-11-29T04:48:09Z) - Federated Conditional Stochastic Optimization [110.513884892319]
Conditional optimization has found in a wide range of machine learning tasks, such as in-variant learning tasks, AUPRC, andAML.
This paper proposes algorithms for distributed federated learning.
arXiv Detail & Related papers (2023-10-04T01:47:37Z) - A Review on Quantum Approximate Optimization Algorithm and its Variants [47.89542334125886]
The Quantum Approximate Optimization Algorithm (QAOA) is a highly promising variational quantum algorithm that aims to solve intractable optimization problems.
This comprehensive review offers an overview of the current state of QAOA, encompassing its performance analysis in diverse scenarios.
We conduct a comparative study of selected QAOA extensions and variants, while exploring future prospects and directions for the algorithm.
arXiv Detail & Related papers (2023-06-15T15:28:12Z) - Iteration Complexity of Variational Quantum Algorithms [5.203200173190989]
We argue that noise makes evaluations of the objective function via quantum circuits biased.
We derive the missing guarantees and find that the rate of convergence is unaffected.
arXiv Detail & Related papers (2022-09-21T19:18:41Z) - Variational quantum iterative power algorithms for global optimization [2.526320329485241]
We introduce a family of variational quantum algorithms called quantum iterative power algorithms (QIPA)
QIPA outperforms existing hybrid near-term quantum algorithms of the same kind.
We anticipate large-scale implementation and adoption of the proposed algorithm across current major quantum hardware.
arXiv Detail & Related papers (2022-08-22T17:45:14Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.