論文の概要: IXAII: An Interactive Explainable Artificial Intelligence Interface for Decision Support Systems
- arxiv url: http://arxiv.org/abs/2506.21310v1
- Date: Thu, 26 Jun 2025 14:28:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-27 19:53:10.128858
- Title: IXAII: An Interactive Explainable Artificial Intelligence Interface for Decision Support Systems
- Title(参考訳): IXAII: 意思決定支援システムのための対話型説明可能な人工知能インタフェース
- Authors: Pauline Speckmann, Mario Nadj, Christian Janiesch,
- Abstract要約: IXAIIは、LIME、SHAP、Anchors、DiCEの4つの説明可能なAIメソッドから説明を提供する。
プロトタイプでは,5つのユーザグループに対して適切なビューを提供し,説明内容やフォーマットに関してユーザエージェンシーを提供する。
- 参考スコア(独自算出の注目度): 0.13654846342364302
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Although several post-hoc methods for explainable AI have been developed, most are static and neglect the user perspective, limiting their effectiveness for the target audience. In response, we developed the interactive explainable intelligent system called IXAII that offers explanations from four explainable AI methods: LIME, SHAP, Anchors, and DiCE. Our prototype provides tailored views for five user groups and gives users agency over the explanations' content and their format. We evaluated IXAII through interviews with experts and lay users. Our results indicate that IXAII, which provides different explanations with multiple visualization options, is perceived as helpful to increase transparency. By bridging the gaps between explainable AI methods, interactivity, and practical implementation, we provide a novel perspective on AI explanation practices and human-AI interaction.
- Abstract(参考訳): 説明可能なAIのためのいくつかのポストホックな方法が開発されているが、その多くは静的であり、ユーザ視点を無視しており、ターゲットのオーディエンスに対する有効性を制限している。
そこで我々は,LIME,SHAP,Anchors,DiCEという4つの説明可能なAI手法から説明を提供する,IXAIIと呼ばれる対話型説明可能な知能システムを開発した。
プロトタイプでは,5つのユーザグループに対して適切なビューを提供し,説明内容とそのフォーマットに関してユーザエージェンシーを提供する。
IXAIIを専門家や一般ユーザへのインタビューを通じて評価した。
以上の結果から,複数の可視化オプションで異なる説明を提供するIXAIIは透明性を高めるのに役立つと考えられた。
説明可能なAIメソッドと対話性,実践的な実装のギャップを埋めることで,AIの説明プラクティスと人間とAIのインタラクションに関する新たな視点を提供する。
関連論文リスト
- Measuring User Understanding in Dialogue-based XAI Systems [2.4124106640519667]
XAIの最先端は、単発、非個人化、一方通行の説明が特徴である。
本稿では,ユーザが学習しているモデルの予測をシミュレートして,3段階のユーザ理解を計測する。
我々は、高い理解率と低い理解率の集団間の相互作用のパターンを明らかにするために、データを分析した。
論文 参考訳(メタデータ) (2024-08-13T15:17:03Z) - Investigating the Role of Explainability and AI Literacy in User Compliance [2.8623940003518156]
XAIの導入により,ユーザのコンプライアンスが向上する一方で,AIリテラシーの影響も受けていることがわかった。
また,AIリテラシーXAIとユーザのコンプライアンスの関係は,ユーザのメンタルモデルが介在していることも確認した。
論文 参考訳(メタデータ) (2024-06-18T14:28:12Z) - How Human-Centered Explainable AI Interface Are Designed and Evaluated: A Systematic Survey [48.97104365617498]
Em Explainable Interfaces (EIs) の登場する領域は,XAI のユーザインターフェースとユーザエクスペリエンス設計に重点を置いている。
本稿では,人間とXAIの相互作用の現在の動向と,EI設計・開発に向けた将来的な方向性を明らかにするために,53の出版物を体系的に調査する。
論文 参考訳(メタデータ) (2024-03-21T15:44:56Z) - XAI for All: Can Large Language Models Simplify Explainable AI? [0.0699049312989311]
x-[plAIn]"は、カスタムのLarge Language Modelを通じて、XAIをより広く利用できるようにする新しいアプローチである。
我々の目標は、様々なXAI手法の明確で簡潔な要約を生成できるモデルを設計することであった。
使用事例調査の結果から,本モデルは理解し易く,観衆特有の説明を提供するのに有効であることが示された。
論文 参考訳(メタデータ) (2024-01-23T21:47:12Z) - Seamful XAI: Operationalizing Seamful Design in Explainable AI [59.89011292395202]
AIシステムのミスは必然的であり、技術的制限と社会技術的ギャップの両方から生じる。
本稿では, 社会工学的・インフラ的ミスマッチを明らかにすることにより, シームレスな設計がAIの説明可能性を高めることを提案する。
43人のAI実践者と実際のエンドユーザでこのプロセスを探求します。
論文 参考訳(メタデータ) (2022-11-12T21:54:05Z) - Towards Human Cognition Level-based Experiment Design for Counterfactual
Explanations (XAI) [68.8204255655161]
XAI研究の重点は、より理解を深めるために、より実践的な説明アプローチに変わったようだ。
認知科学研究がXAIの進歩に大きく影響を与える可能性のある領域は、ユーザの知識とフィードバックを評価することである。
本研究では,異なる認知レベルの理解に基づく説明の生成と評価を実験する枠組みを提案する。
論文 参考訳(メタデータ) (2022-10-31T19:20:22Z) - A User-Centred Framework for Explainable Artificial Intelligence in
Human-Robot Interaction [70.11080854486953]
本稿では,XAIのソーシャル・インタラクティブな側面に着目したユーザ中心型フレームワークを提案する。
このフレームワークは、エキスパートでないユーザのために考えられた対話型XAIソリューションのための構造を提供することを目的としている。
論文 参考訳(メタデータ) (2021-09-27T09:56:23Z) - The Who in XAI: How AI Background Shapes Perceptions of AI Explanations [61.49776160925216]
私たちは、2つの異なるグループ、つまりAIのバックグラウンドを持つ人々といない人たちの、異なるタイプのAI説明に対する理解について、混合手法による研究を行います。
その結果,(1) 両群は異なる理由から不合理な数に対する信頼を示し,(2) それぞれの群は意図した設計以上の異なる説明に価値を見出した。
論文 参考訳(メタデータ) (2021-07-28T17:32:04Z) - Explainable Artificial Intelligence (XAI) for Increasing User Trust in
Deep Reinforcement Learning Driven Autonomous Systems [0.8701566919381223]
我々は3つの説明を提供する説明可能な人工知能(XAI)フレームワークを提供する。
我々は,XAIフレームワークのユーザインタフェースを作成し,その有効性を評価した。
論文 参考訳(メタデータ) (2021-06-07T16:38:43Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。