Active Inference AI Systems for Scientific Discovery
- URL: http://arxiv.org/abs/2506.21329v3
- Date: Sat, 02 Aug 2025 20:50:38 GMT
- Title: Active Inference AI Systems for Scientific Discovery
- Authors: Karthik Duraisamy,
- Abstract summary: This perspective contends that progress turns on closing three mutually reinforcing gaps in abstraction, reasoning and empirical grounding.<n>Design principles are proposed for systems that reason in imaginary spaces and learn from the world.
- Score: 1.450405446885067
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid evolution of artificial intelligence has led to expectations of transformative impact on science, yet current systems remain fundamentally limited in enabling genuine scientific discovery. This perspective contends that progress turns on closing three mutually reinforcing gaps in abstraction, reasoning and empirical grounding. Central to addressing these gaps is recognizing complementary cognitive modes: thinking as slow, iterative hypothesis generation -- exploring counterfactual spaces where physical laws can be temporarily violated to discover new patterns -- and reasoning as fast, deterministic validation, traversing established knowledge graphs to test consistency with known principles. Abstractions in this loop should be manipulable models that enable counterfactual prediction, causal attribution, and refinement. Design principles -- rather than a monolithic recipe -- are proposed for systems that reason in imaginary spaces and learn from the world: causal, multimodal models for internal simulation; persistent, uncertainty-aware scientific memory that distinguishes hypotheses from established claims; formal verification pathways coupled to computations and experiments. It is also argued that the inherent ambiguity in feedback from simulations and experiments, and underlying uncertainties make human judgment indispensable, not as a temporary scaffold but as a permanent architectural component. Evaluations must assess the system's ability to identify novel phenomena, propose falsifiable hypotheses, and efficiently guide experimental programs toward genuine discoveries.
Related papers
- Position: Intelligent Science Laboratory Requires the Integration of Cognitive and Embodied AI [98.19195693735487]
We propose the paradigm of Intelligent Science Laboratories (ISLs)<n>ISLs are a multi-layered, closed-loop framework that deeply integrates cognitive and embodied intelligence.<n>We argue that such systems are essential for overcoming the current limitations of scientific discovery.
arXiv Detail & Related papers (2025-06-24T13:31:44Z) - Bayesian Epistemology with Weighted Authority: A Formal Architecture for Truth-Promoting Autonomous Scientific Reasoning [0.0]
This paper introduces Bayesian Epistemology with Weighted Authority (BEWA)<n>BEWA operationalises belief as a dynamic, probabilistically coherent function over structured scientific claims.<n>It supports graph-based claim propagation, authorial credibility modelling, cryptographic anchoring, and zero-knowledge audit verification.
arXiv Detail & Related papers (2025-06-19T04:22:35Z) - Controllable Logical Hypothesis Generation for Abductive Reasoning in Knowledge Graphs [54.596180382762036]
Abductive reasoning in knowledge graphs aims to generate plausible logical hypotheses from observed entities.<n>Due to a lack of controllability, a single observation may yield numerous plausible but redundant or irrelevant hypotheses.<n>We introduce the task of controllable hypothesis generation to improve the practical utility of abductive reasoning.
arXiv Detail & Related papers (2025-05-27T09:36:47Z) - Temporal Interception and Present Reconstruction: A Cognitive-Signal Model for Human and AI Decision Making [0.0]
This paper proposes a novel theoretical model to explain how the human mind and artificial intelligence can approach real-time awareness.<n>By investigating cosmic signal delay, neurological reaction times, and the ancient cognitive state of stillness, we explore how one may shift from reactive perception to a conscious interface with the near future.
arXiv Detail & Related papers (2025-05-11T15:38:27Z) - Nature's Insight: A Novel Framework and Comprehensive Analysis of Agentic Reasoning Through the Lens of Neuroscience [11.174550573411008]
We propose a novel neuroscience-inspired framework for agentic reasoning.<n>We apply this framework to systematically classify and analyze existing AI reasoning methods.<n>We propose new neural-inspired reasoning methods, analogous to chain-of-thought prompting.
arXiv Detail & Related papers (2025-05-07T14:25:46Z) - Embodied World Models Emerge from Navigational Task in Open-Ended Environments [5.785697934050656]
We ask whether a recurrent agent, trained solely by sparse rewards to solve procedurally generated planar mazes, can autonomously internalize metric concepts such as direction, distance and obstacle layout.<n>After training, the agent consistently produces near-optimal paths in unseen mazes, behavior that hints at an underlying spatial model.
arXiv Detail & Related papers (2025-04-15T17:35:13Z) - Continuum-Interaction-Driven Intelligence: Human-Aligned Neural Architecture via Crystallized Reasoning and Fluid Generation [1.5800607910450124]
Current AI systems face challenges including hallucination, unpredictability, and misalignment with human decision-making.<n>This study proposes a dual-channel intelligent architecture that integrates probabilistic generation (LLMs) with white-box procedural reasoning (chain-of-thought) to construct interpretable, continuously learnable, and human-aligned AI systems.
arXiv Detail & Related papers (2025-04-12T18:15:49Z) - When Counterfactual Reasoning Fails: Chaos and Real-World Complexity [1.9223856107206057]
We investigate the limitations of counterfactual reasoning within the framework of Structural Causal Models.<n>We find that realistic assumptions, such as low degrees of model uncertainty or chaotic dynamics, can result in counterintuitive outcomes.<n>This work urges caution when applying counterfactual reasoning in settings characterized by chaos and uncertainty.
arXiv Detail & Related papers (2025-03-31T08:14:51Z) - LLM and Simulation as Bilevel Optimizers: A New Paradigm to Advance Physical Scientific Discovery [141.39722070734737]
We propose to enhance the knowledge-driven, abstract reasoning abilities of Large Language Models with the computational strength of simulations.
We introduce Scientific Generative Agent (SGA), a bilevel optimization framework.
We conduct experiments to demonstrate our framework's efficacy in law discovery and molecular design.
arXiv Detail & Related papers (2024-05-16T03:04:10Z) - Learning World Models With Hierarchical Temporal Abstractions: A Probabilistic Perspective [2.61072980439312]
Devising formalisms to develop internal world models is a critical research challenge in the domains of artificial intelligence and machine learning.
This thesis identifies several limitations with the prevalent use of state space models as internal world models.
The structure of models in formalisms facilitates exact probabilistic inference using belief propagation, as well as end-to-end learning via backpropagation through time.
These formalisms integrate the concept of uncertainty in world states, thus improving the system's capacity to emulate the nature of the real world and quantify the confidence in its predictions.
arXiv Detail & Related papers (2024-04-24T12:41:04Z) - Neural Operators for Accelerating Scientific Simulations and Design [85.89660065887956]
An AI framework, known as Neural Operators, presents a principled framework for learning mappings between functions defined on continuous domains.
Neural Operators can augment or even replace existing simulators in many applications, such as computational fluid dynamics, weather forecasting, and material modeling.
arXiv Detail & Related papers (2023-09-27T00:12:07Z) - Large Language Models for Automated Open-domain Scientific Hypotheses Discovery [50.40483334131271]
This work proposes the first dataset for social science academic hypotheses discovery.
Unlike previous settings, the new dataset requires (1) using open-domain data (raw web corpus) as observations; and (2) proposing hypotheses even new to humanity.
A multi- module framework is developed for the task, including three different feedback mechanisms to boost performance.
arXiv Detail & Related papers (2023-09-06T05:19:41Z) - Neural Causal Models for Counterfactual Identification and Estimation [62.30444687707919]
We study the evaluation of counterfactual statements through neural models.
First, we show that neural causal models (NCMs) are expressive enough.
Second, we develop an algorithm for simultaneously identifying and estimating counterfactual distributions.
arXiv Detail & Related papers (2022-09-30T18:29:09Z) - Active Inference in Robotics and Artificial Agents: Survey and
Challenges [51.29077770446286]
We review the state-of-the-art theory and implementations of active inference for state-estimation, control, planning and learning.
We showcase relevant experiments that illustrate its potential in terms of adaptation, generalization and robustness.
arXiv Detail & Related papers (2021-12-03T12:10:26Z) - Observing Interventions: A logic for thinking about experiments [62.997667081978825]
This paper makes a first step towards a logic of learning from experiments.
Crucial for our approach is the idea that the notion of an intervention can be used as a formal expression of a (real or hypothetical) experiment.
For all the proposed logical systems, we provide a sound and complete axiomatization.
arXiv Detail & Related papers (2021-11-25T09:26:45Z) - ACRE: Abstract Causal REasoning Beyond Covariation [90.99059920286484]
We introduce the Abstract Causal REasoning dataset for systematic evaluation of current vision systems in causal induction.
Motivated by the stream of research on causal discovery in Blicket experiments, we query a visual reasoning system with the following four types of questions in either an independent scenario or an interventional scenario.
We notice that pure neural models tend towards an associative strategy under their chance-level performance, whereas neuro-symbolic combinations struggle in backward-blocking reasoning.
arXiv Detail & Related papers (2021-03-26T02:42:38Z) - Formalizing Falsification for Theories of Consciousness Across
Computational Hierarchies [0.0]
Integrated Information Theory (IIT) is widely regarded as the preeminent theory of consciousness.
Epistemological issues in the form of the "unfolding argument" have provided a refutation of IIT.
We show how IIT is simultaneously falsified at the finite-state automaton level and unfalsifiable at the state automaton level.
arXiv Detail & Related papers (2020-06-12T18:05:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.