AGTCNet: A Graph-Temporal Approach for Principled Motor Imagery EEG Classification
- URL: http://arxiv.org/abs/2506.21338v1
- Date: Thu, 26 Jun 2025 14:49:10 GMT
- Title: AGTCNet: A Graph-Temporal Approach for Principled Motor Imagery EEG Classification
- Authors: Galvin Brice S. Lim, Brian Godwin S. Lim, Argel A. Bandala, John Anthony C. Jose, Timothy Scott C. Chu, Edwin Sybingco,
- Abstract summary: This study introduces attentive the graph-temporal convolutional network (AGTCNet), a novel graph-temporal model for motor imagery EEG (MI-EEG) classification.<n>With a 49.87% reduction in model size, 64.65% faster inference time, and shorter input EEG signal, AGTCNet achieved a moving average accuracy of 66.82% for subject-independent classification.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Brain-computer interface (BCI) technology utilizing electroencephalography (EEG) marks a transformative innovation, empowering motor-impaired individuals to engage with their environment on equal footing. Despite its promising potential, developing subject-invariant and session-invariant BCI systems remains a significant challenge due to the inherent complexity and variability of neural activity across individuals and over time, compounded by EEG hardware constraints. While prior studies have sought to develop robust BCI systems, existing approaches remain ineffective in capturing the intricate spatiotemporal dependencies within multichannel EEG signals. This study addresses this gap by introducing the attentive graph-temporal convolutional network (AGTCNet), a novel graph-temporal model for motor imagery EEG (MI-EEG) classification. Specifically, AGTCNet leverages the topographic configuration of EEG electrodes as an inductive bias and integrates graph convolutional attention network (GCAT) to jointly learn expressive spatiotemporal EEG representations. The proposed model significantly outperformed existing MI-EEG classifiers, achieving state-of-the-art performance while utilizing a compact architecture, underscoring its effectiveness and practicality for BCI deployment. With a 49.87% reduction in model size, 64.65% faster inference time, and shorter input EEG signal, AGTCNet achieved a moving average accuracy of 66.82% for subject-independent classification on the BCI Competition IV Dataset 2a, which further improved to 82.88% when fine-tuned for subject-specific classification. On the EEG Motor Movement/Imagery Dataset, AGTCNet achieved moving average accuracies of 64.14% and 85.22% for 4-class and 2-class subject-independent classifications, respectively, with further improvements to 72.13% and 90.54% for subject-specific classifications.
Related papers
- CEReBrO: Compact Encoder for Representations of Brain Oscillations Using Efficient Alternating Attention [53.539020807256904]
We introduce a Compact for Representations of Brain Oscillations using alternating attention (CEReBrO)<n>Our tokenization scheme represents EEG signals at a per-channel patch.<n>We propose an alternating attention mechanism that jointly models intra-channel temporal dynamics and inter-channel spatial correlations, achieving 2x speed improvement with 6x less memory required compared to standard self-attention.
arXiv Detail & Related papers (2025-01-18T21:44:38Z) - EEG-DCNet: A Fast and Accurate MI-EEG Dilated CNN Classification Method [10.791605945979995]
We present a novel multi-scale atrous convolutional neural network (CNN) model called EEG-dilated convolution network (DCNet)<n>We incorporate the $1times1$ convolutional layer and utilize the multi-branch parallel atrous convolutional architecture in EEG-DCNet.<n>We show that EEG-DCNet outperforms existing state-of-the-art (SOTA) approaches in terms of classification accuracy and Kappa scores.
arXiv Detail & Related papers (2024-11-12T09:47:50Z) - EEG_RL-Net: Enhancing EEG MI Classification through Reinforcement Learning-Optimised Graph Neural Networks [7.9035081192335115]
We present the EEG_RL-Net, an enhancement to the EEG_GLT-Net framework, which incorporates the trained EEG GCN Block from EEG_GLT-Net at an adjacency matrix density of 13.39%.
The EEG_RL-Net model showcases exceptional classification performance, achieving an unprecedented average accuracy of 96.40% across 20 subjects within 25 milliseconds.
arXiv Detail & Related papers (2024-04-26T13:09:50Z) - EKGNet: A 10.96{\mu}W Fully Analog Neural Network for Intra-Patient
Arrhythmia Classification [79.7946379395238]
We present an integrated approach by combining analog computing and deep learning for electrocardiogram (ECG) arrhythmia classification.
We propose EKGNet, a hardware-efficient and fully analog arrhythmia classification architecture that archives high accuracy with low power consumption.
arXiv Detail & Related papers (2023-10-24T02:37:49Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
Auditory Attention Detection (AAD) aims to detect target speaker from brain signals in a multi-speaker environment.
Current approaches primarily rely on traditional convolutional neural network designed for processing Euclidean data like images.
This paper proposes a dynamical graph self-distillation (DGSD) approach for AAD, which does not require speech stimuli as input.
arXiv Detail & Related papers (2023-09-07T13:43:46Z) - SEVGGNet-LSTM: a fused deep learning model for ECG classification [38.747030782394646]
The input ECG signals are firstly segmented and normalized, and then fed into the combined VGG and LSTM network for feature extraction and classification.
An attention mechanism (SE block) is embedded into the core network for increasing the weight of important features.
arXiv Detail & Related papers (2022-10-31T07:36:48Z) - EEG-Inception: An Accurate and Robust End-to-End Neural Network for
EEG-based Motor Imagery Classification [123.93460670568554]
This paper proposes a novel convolutional neural network (CNN) architecture for accurate and robust EEG-based motor imagery (MI) classification.
The proposed CNN model, namely EEG-Inception, is built on the backbone of the Inception-Time network.
The proposed network is an end-to-end classification, as it takes the raw EEG signals as the input and does not require complex EEG signal-preprocessing.
arXiv Detail & Related papers (2021-01-24T19:03:10Z) - GCNs-Net: A Graph Convolutional Neural Network Approach for Decoding
Time-resolved EEG Motor Imagery Signals [8.19994663278877]
A novel deep learning framework based on the graph convolutional neural networks (GCNs) is presented to enhance the decoding performance of raw EEG signals.
The introduced approach has been shown to converge for both personalized and group-wise predictions.
arXiv Detail & Related papers (2020-06-16T04:57:12Z) - EEG-TCNet: An Accurate Temporal Convolutional Network for Embedded
Motor-Imagery Brain-Machine Interfaces [15.07343602952606]
We propose EEG-TCNet, a novel temporal convolutional network (TCN) that achieves outstanding accuracy while requiring few trainable parameters.
Its low memory footprint and low computational complexity for inference make it suitable for embedded classification on resource-limited devices at the edge.
arXiv Detail & Related papers (2020-05-31T21:45:45Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.