A time-marching quantum algorithm for simulation of the nonlinear Lorenz dynamics
- URL: http://arxiv.org/abs/2506.21354v1
- Date: Thu, 26 Jun 2025 15:08:00 GMT
- Title: A time-marching quantum algorithm for simulation of the nonlinear Lorenz dynamics
- Authors: Efstratios Koukoutsis, George Vahala, Min Soe, Kyriakos Hizanidis, Linda Vahala, Abhay K. Ram,
- Abstract summary: We develop a quantum algorithm that implements the time evolution of a second order time-discretized version of the Lorenz model.<n> Notably, we showcase that it accurately captures the structural characteristics of the Lorenz system.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Simulating nonlinear classical dynamics on a quantum computer is an inherently challenging task due to the linear operator formulation of quantum mechanics. In this work, we provide a systematic approach to alleviate this difficulty by developing a quantum algorithm that implements the time evolution of a second order time-discretized version of the Lorenz model. The Lorenz model is a celebrated system of nonlinear ordinary differential equations that has been extensively studied in the contexts of climate science, fluid dynamics, and chaos theory. Our algorithm possesses a recursive structure and requires only a linear number of copies of the initial state with respect to the number of integration time-steps. This provides a significant improvement over previous approaches, while preserving the characteristic quantum speed-up in terms of the dimensionality of the underlying differential equations system, that similar time-marching quantum algorithms have previously demonstrated. Notably, by classically implementing the proposed algorithm, we showcase that it accurately captures the structural characteristics of the Lorenz system, reproducing both regular attractors--limit cycles--and the chaotic attractor within the chosen parameter regime.
Related papers
- Simulating Time Dependent and Nonlinear Classical Oscillators through Nonlinear Schrödingerization [0.5729426778193399]
We present quantum algorithms for simulating the dynamics of a broad class of classical oscillator systems.<n>Our work extends the applicability of quantum algorithms to simulate the dynamics of non-conservative and nonlinear classical systems.
arXiv Detail & Related papers (2025-05-22T17:48:42Z) - Time-dependent Neural Galerkin Method for Quantum Dynamics [42.81677042059531]
We introduce a classical computational method for quantum dynamics that relies on a global-in-time variational principle.<n>Our scheme computes the entire state trajectory over a finite time window by minimizing a loss function that enforces the Schr"odinger's equation.<n>We showcase the method by simulating global quantum quenches in the paradigmatic Transverse-Field Ising model in both 1D and 2D.
arXiv Detail & Related papers (2024-12-16T13:48:54Z) - Polynomial time and space quantum algorithm for the simulation of non-Markovian quantum dynamics [5.19702850808286]
We developed an efficient quantum algorithm for the simulation of non-Markovian quantum dynamics, based on the Feynman path.<n>It demonstrates the quantum advantage by overcoming the exponential cost on classical computers.<n>The algorithm is efficient regardless of whether entanglement due to non-Markovianity is low or high, making it a unified framework for non-Markovian dynamics in open quantum system.
arXiv Detail & Related papers (2024-11-27T09:25:17Z) - Quantum Simulation of Nonlinear Dynamical Systems Using Repeated Measurement [42.896772730859645]
We present a quantum algorithm based on repeated measurement to solve initial-value problems for nonlinear ordinary differential equations.
We apply this approach to the classic logistic and Lorenz systems in both integrable and chaotic regimes.
arXiv Detail & Related papers (2024-10-04T18:06:12Z) - An Efficient Classical Algorithm for Simulating Short Time 2D Quantum Dynamics [2.891413712995642]
We introduce an efficient classical algorithm for simulating short-time dynamics in 2D quantum systems.<n>Our results reveal the inherent simplicity in the complexity of short-time 2D quantum dynamics.<n>This work advances our understanding of the boundary between classical and quantum computation.
arXiv Detail & Related papers (2024-09-06T09:59:12Z) - Evaluation of phase shifts for non-relativistic elastic scattering using quantum computers [39.58317527488534]
This work reports the development of an algorithm that makes it possible to obtain phase shifts for generic non-relativistic elastic scattering processes on a quantum computer.
arXiv Detail & Related papers (2024-07-04T21:11:05Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
Building a quantum analog of classical deep neural networks represents a fundamental challenge in quantum computing.
Key issue is how to address the inherent non-linearity of classical deep learning.
We introduce the Quantum Path Kernel, a formulation of quantum machine learning capable of replicating those aspects of deep machine learning.
arXiv Detail & Related papers (2022-12-22T16:06:24Z) - Classical simulation of short-time quantum dynamics [0.0]
We present classical algorithms for approximating the dynamics of local observables and nonlocal quantities.
We establish a novel quantum speed limit, a bound on dynamical phase transitions, and a concentration bound for product states evolved for short times.
arXiv Detail & Related papers (2022-10-20T18:00:04Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z) - Fast and differentiable simulation of driven quantum systems [58.720142291102135]
We introduce a semi-analytic method based on the Dyson expansion that allows us to time-evolve driven quantum systems much faster than standard numerical methods.
We show results of the optimization of a two-qubit gate using transmon qubits in the circuit QED architecture.
arXiv Detail & Related papers (2020-12-16T21:43:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.