A Comprehensive Dataset for Underground Miner Detection in Diverse Scenario
- URL: http://arxiv.org/abs/2506.21451v1
- Date: Thu, 26 Jun 2025 16:33:49 GMT
- Title: A Comprehensive Dataset for Underground Miner Detection in Diverse Scenario
- Authors: Cyrus Addy, Ajay Kumar Gurumadaiah, Yixiang Gao, Kwame Awuah-Offei,
- Abstract summary: Underground mining operations face significant safety challenges that make emergency response capabilities crucial.<n>Deep learning algorithms offer potential solutions for automated miner detection, but require comprehensive training datasets.<n>This paper presents a novel thermal imaging dataset specifically designed to enable the development and validation of miner detection systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Underground mining operations face significant safety challenges that make emergency response capabilities crucial. While robots have shown promise in assisting with search and rescue operations, their effectiveness depends on reliable miner detection capabilities. Deep learning algorithms offer potential solutions for automated miner detection, but require comprehensive training datasets, which are currently lacking for underground mining environments. This paper presents a novel thermal imaging dataset specifically designed to enable the development and validation of miner detection systems for potential emergency applications. We systematically captured thermal imagery of various mining activities and scenarios to create a robust foundation for detection algorithms. To establish baseline performance metrics, we evaluated several state-of-the-art object detection algorithms including YOLOv8, YOLOv10, YOLO11, and RT-DETR on our dataset. While not exhaustive of all possible emergency situations, this dataset serves as a crucial first step toward developing reliable thermal-based miner detection systems that could eventually be deployed in real emergency scenarios. This work demonstrates the feasibility of using thermal imaging for miner detection and establishes a foundation for future research in this critical safety application.
Related papers
- Probing Deep into Temporal Profile Makes the Infrared Small Target Detector Much Better [63.567886330598945]
Infrared small target (IRST) detection is challenging in simultaneously achieving precise, universal, robust and efficient performance.<n>Current learning-based methods attempt to leverage more" information from both the spatial and the short-term temporal domains.<n>We propose an efficient deep temporal probe network (DeepPro) that only performs calculations in the time dimension for IRST detection.
arXiv Detail & Related papers (2025-06-15T08:19:32Z) - HoloMine: A Synthetic Dataset for Buried Landmines Recognition using Microwave Holographic Imaging [6.431432627253589]
In this paper, we propose a novel synthetic dataset for buried landmine detection.<n>The dataset consists of 41,800 microwave holographic images (2D) and their holographic inverted scans (3D) of different types of buried objects.<n>We evaluate the performance of several state-of-the-art deep learning models trained on our synthetic dataset for various classification tasks.
arXiv Detail & Related papers (2025-02-28T13:53:35Z) - Experimental validation of UAV search and detection system in real wilderness environment [0.0]
We design and experiment with autonomous UAV search for humans in a Mediterranean karst environment.<n>The UAVs are directed using Heat equation-driven area coverage (HEDAC) ergodic control method according to known probability density and detection function.
arXiv Detail & Related papers (2025-02-24T17:53:54Z) - EARBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [53.717918131568936]
Embodied artificial intelligence (EAI) integrates advanced AI models into physical entities for real-world interaction.<n>Foundation models as the "brain" of EAI agents for high-level task planning have shown promising results.<n>However, the deployment of these agents in physical environments presents significant safety challenges.<n>This study introduces EARBench, a novel framework for automated physical risk assessment in EAI scenarios.
arXiv Detail & Related papers (2024-08-08T13:19:37Z) - SimMining-3D: Altitude-Aware 3D Object Detection in Complex Mining
Environments: A Novel Dataset and ROS-Based Automatic Annotation Pipeline [0.9790236766474201]
We introduce a synthetic dataset SimMining 3D specifically designed for 3D object detection in mining environments.
The dataset captures objects and sensors positioned at various heights within mine benches, accurately reflecting authentic mining scenarios.
We propose evaluation metrics accounting for sensor-to-object height variations and point cloud density, enabling accurate model assessment.
arXiv Detail & Related papers (2023-12-11T04:33:45Z) - Burnt area extraction from high-resolution satellite images based on
anomaly detection [1.8843687952462738]
We build upon the framework of Vector Quantized Variational Autoencoder (VQ-VAE) to perform unsupervised burnt area extraction.
We integrate VQ-VAE into an end-to-end framework with an intensive post-processing step using dedicated vegetation, water and brightness indexes.
arXiv Detail & Related papers (2023-08-25T13:25:27Z) - Efficient Real-time Smoke Filtration with 3D LiDAR for Search and Rescue
with Autonomous Heterogeneous Robotic Systems [56.838297900091426]
Smoke and dust affect the performance of any mobile robotic platform due to their reliance on onboard perception systems.
This paper proposes a novel modular computation filtration pipeline based on intensity and spatial information.
arXiv Detail & Related papers (2023-08-14T16:48:57Z) - Unlocking the Use of Raw Multispectral Earth Observation Imagery for Onboard Artificial Intelligence [3.3810628880631226]
This work presents a novel methodology to automate the creation of datasets for the detection of target events.
The presented approach first processes the raw data by applying a pipeline consisting of spatial band registration and georeferencing.
It detects the target events by leveraging event-specific state-of-the-art algorithms on the Level-1C products.
We apply the proposed methodology to realize THRawS (Thermal Hotspots in Raw Sentinel-2 data), the first dataset of Sentinel-2 raw data containing warm thermal hotspots.
arXiv Detail & Related papers (2023-05-12T09:54:21Z) - Incremental 3D Scene Completion for Safe and Efficient Exploration
Mapping and Planning [60.599223456298915]
We propose a novel way to integrate deep learning into exploration by leveraging 3D scene completion for informed, safe, and interpretable mapping and planning.
We show that our method can speed up coverage of an environment by 73% compared to the baselines with only minimal reduction in map accuracy.
Even if scene completions are not included in the final map, we show that they can be used to guide the robot to choose more informative paths, speeding up the measurement of the scene with the robot's sensors by 35%.
arXiv Detail & Related papers (2022-08-17T14:19:33Z) - Meta-UDA: Unsupervised Domain Adaptive Thermal Object Detection using
Meta-Learning [64.92447072894055]
Infrared (IR) cameras are robust under adverse illumination and lighting conditions.
We propose an algorithm meta-learning framework to improve existing UDA methods.
We produce a state-of-the-art thermal detector for the KAIST and DSIAC datasets.
arXiv Detail & Related papers (2021-10-07T02:28:18Z) - Towards AIOps in Edge Computing Environments [60.27785717687999]
This paper describes the system design of an AIOps platform which is applicable in heterogeneous, distributed environments.
It is feasible to collect metrics with a high frequency and simultaneously run specific anomaly detection algorithms directly on edge devices.
arXiv Detail & Related papers (2021-02-12T09:33:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.