Burnt area extraction from high-resolution satellite images based on
anomaly detection
- URL: http://arxiv.org/abs/2308.13367v1
- Date: Fri, 25 Aug 2023 13:25:27 GMT
- Title: Burnt area extraction from high-resolution satellite images based on
anomaly detection
- Authors: Oscar David Rafael Narvaez Luces, Minh-Tan Pham, Quentin Poterek,
R\'emi Braun
- Abstract summary: We build upon the framework of Vector Quantized Variational Autoencoder (VQ-VAE) to perform unsupervised burnt area extraction.
We integrate VQ-VAE into an end-to-end framework with an intensive post-processing step using dedicated vegetation, water and brightness indexes.
- Score: 1.8843687952462738
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Wildfire detection using satellite images is a widely studied task in remote
sensing with many applications to fire delineation and mapping. Recently, deep
learning methods have become a scalable solution to automate this task,
especially in the field of unsupervised learning where no training data is
available. This is particularly important in the context of emergency risk
monitoring where fast and effective detection is needed, generally based on
high-resolution satellite data. Among various approaches, Anomaly Detection
(AD) appears to be highly potential thanks to its broad applications in
computer vision, medical imaging, as well as remote sensing. In this work, we
build upon the framework of Vector Quantized Variational Autoencoder (VQ-VAE),
a popular reconstruction-based AD method with discrete latent spaces, to
perform unsupervised burnt area extraction. We integrate VQ-VAE into an
end-to-end framework with an intensive post-processing step using dedicated
vegetation, water and brightness indexes. Our experiments conducted on
high-resolution SPOT-6/7 images provide promising results of the proposed
technique, showing its high potential in future research on unsupervised burnt
area extraction.
Related papers
- FlightScope: A Deep Comprehensive Review of Aircraft Detection Algorithms in Satellite Imagery [2.9687381456164004]
This paper critically evaluates and compares a suite of advanced object detection algorithms customized for the task of identifying aircraft within satellite imagery.
This research encompasses an array of methodologies including YOLO versions 5 and 8, Faster RCNN, CenterNet, RetinaNet, RTMDet, and DETR, all trained from scratch.
YOLOv5 emerges as a robust solution for aerial object detection, underlining its importance through superior mean average precision, Recall, and Intersection over Union scores.
arXiv Detail & Related papers (2024-04-03T17:24:27Z) - SegNet: A Segmented Deep Learning based Convolutional Neural Network Approach for Drones Wildfire Detection [2.07180164747172]
This research addresses the pressing challenge of enhancing processing times and detection capabilities in Unmanned Aerial Vehicle (UAV)/drone imagery for global wildfire detection.
We focus on reducing feature maps to boost both time resolution and accuracy significantly advancing processing speeds and accuracy in real-time wildfire detection.
arXiv Detail & Related papers (2024-02-29T15:23:12Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - Deep Industrial Image Anomaly Detection: A Survey [85.44223757234671]
Recent rapid development of deep learning has laid a milestone in industrial Image Anomaly Detection (IAD)
In this paper, we provide a comprehensive review of deep learning-based image anomaly detection techniques.
We highlight several opening challenges for image anomaly detection.
arXiv Detail & Related papers (2023-01-27T03:18:09Z) - Unsupervised Wildfire Change Detection based on Contrastive Learning [1.53934570513443]
The accurate characterization of the severity of the wildfire event contributes to the characterization of the fuel conditions in fire-prone areas.
The aim of this study is to develop an autonomous system built on top of high-resolution multispectral satellite imagery, with an advanced deep learning method for detecting burned area change.
arXiv Detail & Related papers (2022-11-26T20:13:14Z) - Deep Learning Computer Vision Algorithms for Real-time UAVs On-board
Camera Image Processing [77.34726150561087]
This paper describes how advanced deep learning based computer vision algorithms are applied to enable real-time on-board sensor processing for small UAVs.
All algorithms have been developed using state-of-the-art image processing methods based on deep neural networks.
arXiv Detail & Related papers (2022-11-02T11:10:42Z) - LiDAR-guided object search and detection in Subterranean Environments [12.265807098187297]
This work utilizes the complementary nature of vision and depth sensors to leverage multi-modal information to aid object detection at longer distances.
The proposed work has been thoroughly verified using an ANYmal quadruped robot in underground settings and on datasets collected during the DARPA Subterranean Challenge finals.
arXiv Detail & Related papers (2022-10-26T19:38:19Z) - Target-aware Dual Adversarial Learning and a Multi-scenario
Multi-Modality Benchmark to Fuse Infrared and Visible for Object Detection [65.30079184700755]
This study addresses the issue of fusing infrared and visible images that appear differently for object detection.
Previous approaches discover commons underlying the two modalities and fuse upon the common space either by iterative optimization or deep networks.
This paper proposes a bilevel optimization formulation for the joint problem of fusion and detection, and then unrolls to a target-aware Dual Adversarial Learning (TarDAL) network for fusion and a commonly used detection network.
arXiv Detail & Related papers (2022-03-30T11:44:56Z) - Unsupervised deep learning techniques for powdery mildew recognition
based on multispectral imaging [63.62764375279861]
This paper presents a deep learning approach to automatically recognize powdery mildew on cucumber leaves.
We focus on unsupervised deep learning techniques applied to multispectral imaging data.
We propose the use of autoencoder architectures to investigate two strategies for disease detection.
arXiv Detail & Related papers (2021-12-20T13:29:13Z) - EmergencyNet: Efficient Aerial Image Classification for Drone-Based
Emergency Monitoring Using Atrous Convolutional Feature Fusion [8.634988828030245]
This article focuses on the efficient aerial image classification from on-board a UAV for emergency response/monitoring applications.
A dedicated Aerial Image Database for Emergency Response applications is introduced and a comparative analysis of existing approaches is performed.
A lightweight convolutional neural network architecture is proposed, referred to as EmergencyNet, based on atrous convolutions to process multiresolution features.
arXiv Detail & Related papers (2021-04-28T20:24:10Z) - AutoOD: Automated Outlier Detection via Curiosity-guided Search and
Self-imitation Learning [72.99415402575886]
Outlier detection is an important data mining task with numerous practical applications.
We propose AutoOD, an automated outlier detection framework, which aims to search for an optimal neural network model.
Experimental results on various real-world benchmark datasets demonstrate that the deep model identified by AutoOD achieves the best performance.
arXiv Detail & Related papers (2020-06-19T18:57:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.