Global and Local Entailment Learning for Natural World Imagery
- URL: http://arxiv.org/abs/2506.21476v1
- Date: Thu, 26 Jun 2025 17:05:06 GMT
- Title: Global and Local Entailment Learning for Natural World Imagery
- Authors: Srikumar Sastry, Aayush Dhakal, Eric Xing, Subash Khanal, Nathan Jacobs,
- Abstract summary: Radial Cross-Modal Embeddings (RCME) is a framework that enables the explicit modeling of transitivity-enforced entailment.<n>We develop a hierarchical vision-language foundation model capable of representing the hierarchy in the Tree of Life.
- Score: 7.874291189886743
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning the hierarchical structure of data in vision-language models is a significant challenge. Previous works have attempted to address this challenge by employing entailment learning. However, these approaches fail to model the transitive nature of entailment explicitly, which establishes the relationship between order and semantics within a representation space. In this work, we introduce Radial Cross-Modal Embeddings (RCME), a framework that enables the explicit modeling of transitivity-enforced entailment. Our proposed framework optimizes for the partial order of concepts within vision-language models. By leveraging our framework, we develop a hierarchical vision-language foundation model capable of representing the hierarchy in the Tree of Life. Our experiments on hierarchical species classification and hierarchical retrieval tasks demonstrate the enhanced performance of our models compared to the existing state-of-the-art models. Our code and models are open-sourced at https://vishu26.github.io/RCME/index.html.
Related papers
- Language Model as Visual Explainer [72.88137795439407]
We present a systematic approach for interpreting vision models using a tree-structured linguistic explanation.<n>Our method provides human-understandable explanations in the form of attribute-laden trees.<n>To access the effectiveness of our approach, we introduce new benchmarks and conduct rigorous evaluations.
arXiv Detail & Related papers (2024-12-08T20:46:23Z) - Emergent Visual-Semantic Hierarchies in Image-Text Representations [13.300199242824934]
We study the knowledge of existing foundation models, finding that they exhibit emergent understanding of visual-semantic hierarchies.
We propose the Radial Embedding (RE) framework for probing and optimizing hierarchical understanding.
arXiv Detail & Related papers (2024-07-11T14:09:42Z) - Explore In-Context Segmentation via Latent Diffusion Models [132.26274147026854]
In-context segmentation aims to segment objects using given reference images.<n>Most existing approaches adopt metric learning or masked image modeling to build the correlation between visual prompts and input image queries.<n>This work approaches the problem from a fresh perspective - unlocking the capability of the latent diffusion model for in-context segmentation.
arXiv Detail & Related papers (2024-03-14T17:52:31Z) - Interpreting and Controlling Vision Foundation Models via Text
Explanations [45.30541722925515]
We present a framework for interpreting vision transformer's latent tokens with natural language.
Our approach enables understanding of model visual reasoning procedure without needing additional model training or data collection.
arXiv Detail & Related papers (2023-10-16T17:12:06Z) - Compositional Foundation Models for Hierarchical Planning [52.18904315515153]
We propose a foundation model which leverages expert foundation model trained on language, vision and action data individually together to solve long-horizon tasks.
We use a large language model to construct symbolic plans that are grounded in the environment through a large video diffusion model.
Generated video plans are then grounded to visual-motor control, through an inverse dynamics model that infers actions from generated videos.
arXiv Detail & Related papers (2023-09-15T17:44:05Z) - Class-level Structural Relation Modelling and Smoothing for Visual
Representation Learning [12.247343963572732]
This paper presents a framework termed bfClass-level Structural Relation Modeling and Smoothing for Visual Representation Learning (CSRMS)
It includes the Class-level Relation Modelling, Class-aware GraphGuided Sampling, and Graph-Guided Representation Learning modules.
Experiments demonstrate the effectiveness of structured knowledge modelling for enhanced representation learning and show that CSRMS can be incorporated with any state-of-the-art visual representation learning models for performance gains.
arXiv Detail & Related papers (2023-08-08T09:03:46Z) - Foundational Models Defining a New Era in Vision: A Survey and Outlook [151.49434496615427]
Vision systems to see and reason about the compositional nature of visual scenes are fundamental to understanding our world.
The models learned to bridge the gap between such modalities coupled with large-scale training data facilitate contextual reasoning, generalization, and prompt capabilities at test time.
The output of such models can be modified through human-provided prompts without retraining, e.g., segmenting a particular object by providing a bounding box, having interactive dialogues by asking questions about an image or video scene or manipulating the robot's behavior through language instructions.
arXiv Detail & Related papers (2023-07-25T17:59:18Z) - UniDiff: Advancing Vision-Language Models with Generative and
Discriminative Learning [86.91893533388628]
This paper presents UniDiff, a unified multi-modal model that integrates image-text contrastive learning (ITC), text-conditioned image synthesis learning (IS), and reciprocal semantic consistency modeling (RSC)
UniDiff demonstrates versatility in both multi-modal understanding and generative tasks.
arXiv Detail & Related papers (2023-06-01T15:39:38Z) - Language Models are General-Purpose Interfaces [109.45478241369655]
We propose to use language models as a general-purpose interface to various foundation models.
A collection of pretrained encoders perceive diverse modalities (such as vision, and language)
We propose a semi-causal language modeling objective to jointly pretrain the interface and the modular encoders.
arXiv Detail & Related papers (2022-06-13T17:34:22Z) - S2RMs: Spatially Structured Recurrent Modules [105.0377129434636]
We take a step towards exploiting dynamic structure that are capable of simultaneously exploiting both modular andtemporal structures.
We find our models to be robust to the number of available views and better capable of generalization to novel tasks without additional training.
arXiv Detail & Related papers (2020-07-13T17:44:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.