Mitigating Hallucination of Large Vision-Language Models via Dynamic Logits Calibration
- URL: http://arxiv.org/abs/2506.21509v1
- Date: Thu, 26 Jun 2025 17:35:40 GMT
- Title: Mitigating Hallucination of Large Vision-Language Models via Dynamic Logits Calibration
- Authors: Jiahe Chen, Jiaying He, Qian Shao, Qiyuan Chen, Jiahe Ying, Hongxia Xu, Jintai Chen, Jianwei Zheng, Jian Wu,
- Abstract summary: Large Vision-Language Models (LVLMs) have demonstrated significant advancements in multimodal understanding.<n>They are frequently hampered by hallucination-the generation of text that contradicts visual input.<n>Existing training-free decoding strategies exhibit critical limitations.<n>This paper introduces Dynamic Logits (DLC), a novel training-free decoding framework designed to align text generation with visual evidence at inference time.
- Score: 8.192590936983347
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Vision-Language Models (LVLMs) have demonstrated significant advancements in multimodal understanding, yet they are frequently hampered by hallucination-the generation of text that contradicts visual input. Existing training-free decoding strategies exhibit critical limitations, including the use of static constraints that do not adapt to semantic drift during generation, inefficiency stemming from the need for multiple forward passes, and degradation of detail due to overly rigid intervention rules. To overcome these challenges, this paper introduces Dynamic Logits Calibration (DLC), a novel training-free decoding framework designed to dynamically align text generation with visual evidence at inference time. At the decoding phase, DLC step-wise employs CLIP to assess the semantic alignment between the input image and the generated text sequence. Then, the Relative Visual Advantage (RVA) of candidate tokens is evaluated against a dynamically updated contextual baseline, adaptively adjusting output logits to favor tokens that are visually grounded. Furthermore, an adaptive weighting mechanism, informed by a real-time context alignment score, carefully balances the visual guidance while ensuring the overall quality of the textual output. Extensive experiments conducted across diverse benchmarks and various LVLM architectures (such as LLaVA, InstructBLIP, and MiniGPT-4) demonstrate that DLC significantly reduces hallucinations, outperforming current methods while maintaining high inference efficiency by avoiding multiple forward passes. Overall, we present an effective and efficient decoding-time solution to mitigate hallucinations, thereby enhancing the reliability of LVLMs for more practices. Code will be released on Github.
Related papers
- ONLY: One-Layer Intervention Sufficiently Mitigates Hallucinations in Large Vision-Language Models [67.75439511654078]
Large Vision-Language Models (LVLMs) have introduced a new paradigm for understanding and reasoning about image input through textual responses.<n>They face the persistent challenge of hallucination, which introduces practical weaknesses and raises concerns about their reliable deployment in real-world applications.<n>We propose ONLY, a training-free decoding approach that requires only a single query and a one-layer intervention during decoding, enabling efficient real-time deployment.
arXiv Detail & Related papers (2025-07-01T16:01:08Z) - Rethinking Visual Token Reduction in LVLMs under Cross-modal Misalignment [38.04426918886084]
Vision-Language Models (LVLMs) encode visual inputs as dense sequences of patch-level tokens to capture fine-grained semantics.<n>Previous efforts have explored visual token reduction either prior to or within the large language models (LLMs)<n>We introduce VisionDrop, a training-free, visual-only pruning framework that selects informative visual tokens based on intra-modal (visual-to-visual) attention.
arXiv Detail & Related papers (2025-06-27T14:55:40Z) - Revisit What You See: Disclose Language Prior in Vision Tokens for Efficient Guided Decoding of LVLMs [8.97780713904412]
This paper introduces ReVisiT, a simple yet effective decoding method that references vision tokens to guide the text generation process in Large Vision-Language Models (LVLMs)<n>Our approach leverages the semantic information embedded within vision tokens by projecting them into the text token distribution space, and dynamically selecting the most relevant vision token at each decoding step through constrained divergence minimization. Experiments on three LVLM benchmarks with two recent LVLMs demonstrate that ReVisiT consistently enhances visual grounding with minimal computational overhead.
arXiv Detail & Related papers (2025-06-11T08:46:55Z) - Grounding Language with Vision: A Conditional Mutual Information Calibrated Decoding Strategy for Reducing Hallucinations in LVLMs [42.871396640891334]
Large Vision-Language Models (LVLMs) are susceptible to hallucinations.<n>We introduce a novel Conditional Pointwise Mutual Information (C-PMI) calibrated decoding strategy.<n>We show that the proposed method significantly reduces hallucinations in LVLMs while preserving decoding efficiency.
arXiv Detail & Related papers (2025-05-26T08:36:10Z) - Mitigating Visual Knowledge Forgetting in MLLM Instruction-tuning via Modality-decoupled Gradient Descent [72.1517476116743]
Recent MLLMs have shown emerging visual understanding and reasoning abilities after being pre-trained on large-scale multimodal datasets.<n>Existing approaches, such as direct fine-tuning and continual learning methods, fail to explicitly address this issue.<n>We introduce a novel perspective leveraging effective rank to quantify the degradation of visual representation forgetting.<n>We propose a modality-decoupled gradient descent (MDGD) method that regulates gradient updates to maintain the effective rank of visual representations.
arXiv Detail & Related papers (2025-02-17T12:26:34Z) - Mitigating Hallucination for Large Vision Language Model by Inter-Modality Correlation Calibration Decoding [66.06337890279839]
Large vision-language models (LVLMs) have shown remarkable capabilities in visual-language understanding for downstream multi-modal tasks.<n>LVLMs still suffer from generating hallucinations in complex generation tasks, leading to inconsistencies between visual inputs and generated content.<n>We propose an Inter-Modality Correlation Decoding (IMCCD) method to mitigate hallucinations in LVLMs in a training-free manner.
arXiv Detail & Related papers (2025-01-03T17:56:28Z) - Fine-Grained Verifiers: Preference Modeling as Next-token Prediction in Vision-Language Alignment [57.0121616203175]
We propose FiSAO, a novel self-alignment method that utilizes the model's own visual encoder as a fine-grained verifier to improve vision-language alignment.<n>By leveraging token-level feedback from the vision encoder, FiSAO significantly improves vision-language alignment, even surpassing traditional preference tuning methods that require additional data.
arXiv Detail & Related papers (2024-10-18T03:34:32Z) - CODE: Contrasting Self-generated Description to Combat Hallucination in Large Multi-modal Models [51.70129969269271]
We introduce a novel contrastive-based decoding method, COuntering DEscription Contrastive Decoding (CODE)
Our method significantly reduces hallucinations and improves cross-modal consistency across various benchmarks and cutting-edge LMMs.
arXiv Detail & Related papers (2024-06-04T03:04:21Z) - VoLTA: Vision-Language Transformer with Weakly-Supervised Local-Feature
Alignment [52.489874804051304]
VoLTA is a new vision-language pre-training paradigm that only utilizes image-caption data but fine-grained region-level image understanding.
VoLTA pushes multi-modal fusion deep into the uni-modal backbones during pre-training.
Experiments on a wide range of vision- and vision-language downstream tasks demonstrate the effectiveness of VoLTA.
arXiv Detail & Related papers (2022-10-09T01:49:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.