Gazal-R1: Achieving State-of-the-Art Medical Reasoning with Parameter-Efficient Two-Stage Training
- URL: http://arxiv.org/abs/2506.21594v1
- Date: Wed, 18 Jun 2025 09:44:21 GMT
- Title: Gazal-R1: Achieving State-of-the-Art Medical Reasoning with Parameter-Efficient Two-Stage Training
- Authors: Ahmed M. Adly, Mostafa Samy, Amr Fawzy,
- Abstract summary: We present Gazal-R1, a 32-billion- parameter language model that achieves state-of-the-art performance in medical reasoning.<n>Our model demonstrates that strategic training can enable mid-sized models to outperform significantly larger counterparts in specialized domains.<n>Gazal-R1 achieves exceptional performance across medical benchmarks, scoring 87.1% on MedQA, 81.6% on MMLU Pro (Medical), and 79.6% on PubMedQA.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present Gazal-R1, a 32-billion-parameter language model that achieves state-of-the-art performance in medical reasoning while providing transparent, step-by-step explanations for clinical decision-making. Built upon Qwen3 32B, our model demonstrates that strategic training can enable mid-sized models to outperform significantly larger counterparts in specialized domains. We developed a novel two-stage training pipeline: first, supervised fine-tuning on a carefully curated dataset of 107,033 synthetic medical reasoning examples that teaches structured clinical thinking, enhanced by advanced parameter-efficient techniques including Weight-Decomposed Low-Rank Adaptation (DoRA) and Rank-Stabilized LoRA (rsLoRA); second, reinforcement learning using Group Relative Policy Optimization (GRPO) with a sophisticated multi-component reward system that refines accuracy, format adherence, and reasoning quality. Gazal-R1 achieves exceptional performance across medical benchmarks, scoring 87.1% on MedQA, 81.6% on MMLU Pro (Medical), and 79.6% on PubMedQA, surpassing models up to 12x larger. Beyond its strong empirical results, this work provides detailed insights into the challenges of training reasoning-capable models in specialized domains, including issues with reward hacking, training instability, and the fundamental tension between factual recall and detailed reasoning. Our methodology offers a reproducible framework for developing high-capability, domain-specific language models that balance performance, efficiency, and explainability.
Related papers
- Medical Reasoning in the Era of LLMs: A Systematic Review of Enhancement Techniques and Applications [59.721265428780946]
Large Language Models (LLMs) in medicine have enabled impressive capabilities, yet a critical gap remains in their ability to perform systematic, transparent, and verifiable reasoning.<n>This paper provides the first systematic review of this emerging field.<n>We propose a taxonomy of reasoning enhancement techniques, categorized into training-time strategies and test-time mechanisms.
arXiv Detail & Related papers (2025-08-01T14:41:31Z) - Trustworthy Reasoning: Evaluating and Enhancing Factual Accuracy in LLM Intermediate Thought Processes [16.451488374845407]
We present a novel framework addressing a critical vulnerability in Large Language Models (LLMs)<n>This phenomenon poses substantial risks in high-stakes domains including healthcare, legal analysis, and scientific research.
arXiv Detail & Related papers (2025-07-25T10:34:51Z) - Benchmarking Foundation Models and Parameter-Efficient Fine-Tuning for Prognosis Prediction in Medical Imaging [26.589728923739596]
We evaluate and compare the transferability of Convolutional Neural Networks and Foundation Models in predicting clinical outcomes in COVID-19 patients.<n>The evaluations were conducted across multiple learning paradigms, including both extensive full-data scenarios and more clinically realistic Few-Shot Learning settings.
arXiv Detail & Related papers (2025-06-23T09:16:04Z) - QoQ-Med: Building Multimodal Clinical Foundation Models with Domain-Aware GRPO Training [27.457139119626884]
QoQ-Med is the first open generalist clinical foundation model that jointly reasons across medical images, time-series signals, and text reports.<n>We show that DRPO training boosts diagnostic performance by 43% in macro-F1 on average across all visual domains.<n>With QoQ-Med trained on intensive segmentation data, it is able to highlight salient regions related to the diagnosis, with an IoU 10x higher than open models.
arXiv Detail & Related papers (2025-05-31T21:02:52Z) - WiNGPT-3.0 Technical Report [8.679917766554723]
Current Large Language Models (LLMs) exhibit significant limitations, notably in structured, interpretable, and verifiable medical reasoning.<n>This report focuses on the development of WiNGPT-3.0, the 32-billion parameter LLMs, engineered with the objective of enhancing its capacity for medical reasoning.
arXiv Detail & Related papers (2025-05-23T01:53:04Z) - ChestX-Reasoner: Advancing Radiology Foundation Models with Reasoning through Step-by-Step Verification [57.22053411719822]
ChestX-Reasoner is a radiology diagnosis MLLM designed to leverage process supervision mined directly from clinical reports.<n>Our two-stage training framework combines supervised fine-tuning and reinforcement learning guided by process rewards to better align model reasoning with clinical standards.
arXiv Detail & Related papers (2025-04-29T16:48:23Z) - A Method for the Architecture of a Medical Vertical Large Language Model Based on Deepseek R1 [6.589206192038366]
This paper presents an efficient lightweight medical large language model architecture that addresses knowledge acquisition, model compression, and computational enhancement challenges.<n>We design a knowledge transfer pipeline from DeepSeek-R1-Distill-70B to DeepSeek-R1-Distill-7B using Low-Rank Adaptation (LoRA) for precise medical knowledge retention.<n>Our approach maintains 92.1% accuracy on USMLE while reducing memory consumption by 64.7% and latency by 12.4% compared to baseline inference models.
arXiv Detail & Related papers (2025-04-25T14:28:29Z) - SemiHVision: Enhancing Medical Multimodal Models with a Semi-Human Annotated Dataset and Fine-Tuned Instruction Generation [13.672776832197918]
Multimodal large language models (MLLMs) have made significant strides, yet they face challenges in the medical domain due to limited specialized knowledge.
We seek to address this gap at various stages of the end-to-end learning pipeline, including data collection, model fine-tuning, and evaluation.
arXiv Detail & Related papers (2024-10-19T02:35:35Z) - LoRKD: Low-Rank Knowledge Decomposition for Medical Foundation Models [59.961172635689664]
"Knowledge Decomposition" aims to improve the performance on specific medical tasks.
We propose a novel framework named Low-Rank Knowledge Decomposition (LoRKD)
LoRKD explicitly separates gradients from different tasks by incorporating low-rank expert modules and efficient knowledge separation convolution.
arXiv Detail & Related papers (2024-09-29T03:56:21Z) - Towards a clinically accessible radiology foundation model: open-access and lightweight, with automated evaluation [113.5002649181103]
Training open-source small multimodal models (SMMs) to bridge competency gaps for unmet clinical needs in radiology.
For training, we assemble a large dataset of over 697 thousand radiology image-text pairs.
For evaluation, we propose CheXprompt, a GPT-4-based metric for factuality evaluation, and demonstrate its parity with expert evaluation.
The inference of LlaVA-Rad is fast and can be performed on a single V100 GPU in private settings, offering a promising state-of-the-art tool for real-world clinical applications.
arXiv Detail & Related papers (2024-03-12T18:12:02Z) - Robust and Efficient Medical Imaging with Self-Supervision [80.62711706785834]
We present REMEDIS, a unified representation learning strategy to improve robustness and data-efficiency of medical imaging AI.
We study a diverse range of medical imaging tasks and simulate three realistic application scenarios using retrospective data.
arXiv Detail & Related papers (2022-05-19T17:34:18Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
The framework includes deep-learning models at the swallow-level stage and feature-based machine learning models at the study-level stage.
This is the first artificial-intelligence-style model to automatically predict CC diagnosis of HRM study from raw multi-swallow data.
arXiv Detail & Related papers (2021-06-25T20:09:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.