Elucidating and Endowing the Diffusion Training Paradigm for General Image Restoration
- URL: http://arxiv.org/abs/2506.21722v1
- Date: Thu, 26 Jun 2025 19:14:27 GMT
- Title: Elucidating and Endowing the Diffusion Training Paradigm for General Image Restoration
- Authors: Xin Lu, Xueyang Fu, Jie Xiao, Zihao Fan, Yurui Zhu, Zheng-Jun Zha,
- Abstract summary: diffusion models demonstrate strong generative capabilities in image restoration (IR) tasks.<n>Their complex architectures and iterative processes limit their practical application compared to mainstream reconstruction-based general ordinary IR networks.<n>Existing approaches primarily focus on optimizing network architecture and diffusion paths but overlook the integration of the diffusion training paradigm within general ordinary IR frameworks.
- Score: 73.4733153072447
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While diffusion models demonstrate strong generative capabilities in image restoration (IR) tasks, their complex architectures and iterative processes limit their practical application compared to mainstream reconstruction-based general ordinary IR networks. Existing approaches primarily focus on optimizing network architecture and diffusion paths but overlook the integration of the diffusion training paradigm within general ordinary IR frameworks. To address these challenges, this paper elucidates key principles for adapting the diffusion training paradigm to general IR training through systematic analysis of time-step dependencies, network hierarchies, noise-level relationships, and multi-restoration task correlations, proposing a new IR framework supported by diffusion-based training. To enable IR networks to simultaneously restore images and model generative representations, we introduce a series of regularization strategies that align diffusion objectives with IR tasks, improving generalization in single-task scenarios. Furthermore, recognizing that diffusion-based generation exerts varying influences across different IR tasks, we develop an incremental training paradigm and task-specific adaptors, further enhancing performance in multi-task unified IR. Experiments demonstrate that our method significantly improves the generalization of IR networks in single-task IR and achieves superior performance in multi-task unified IR. Notably, the proposed framework can be seamlessly integrated into existing general IR architectures.
Related papers
- DiffRIS: Enhancing Referring Remote Sensing Image Segmentation with Pre-trained Text-to-Image Diffusion Models [9.109484087832058]
DiffRIS is a novel framework that harnesses the semantic understanding capabilities of pre-trained text-to-image diffusion models for RRSIS tasks.<n>Our framework introduces two key innovations: a context perception adapter (CP-adapter) and a cross-modal reasoning decoder (PCMRD)
arXiv Detail & Related papers (2025-06-23T02:38:56Z) - PeRL: Permutation-Enhanced Reinforcement Learning for Interleaved Vision-Language Reasoning [50.21619363035618]
We propose a general reinforcement learning approach PeRL tailored for interleaved multimodal tasks.<n>We introduce permutation of image sequences to simulate varied positional relationships to explore more spatial and positional diversity.<n>Our experiments confirm that PeRL trained model consistently surpasses R1-related and interleaved VLM baselines by a large margin.
arXiv Detail & Related papers (2025-06-17T18:25:56Z) - SHIELD: Multi-task Multi-distribution Vehicle Routing Solver with Sparsity and Hierarchy [26.708590440636527]
We introduce SHIELD, a novel model that leverages both sparsity and hierarchy principles.<n>We develop a context-based clustering layer that exploits the presence of hierarchical structures in the problems to produce better local representations.<n>Our results demonstrate the superiority of our approach over existing methods on 9 real-world maps with 16 VRP variants each.
arXiv Detail & Related papers (2025-06-10T03:55:14Z) - Manifold-aware Representation Learning for Degradation-agnostic Image Restoration [135.90908995927194]
Image Restoration (IR) aims to recover high quality images from degraded inputs affected by various corruptions such as noise, blur, haze, rain, and low light conditions.<n>We present MIRAGE, a unified framework for all in one IR that explicitly decomposes the input feature space into three semantically aligned parallel branches.<n>This modular decomposition significantly improves generalization and efficiency across diverse degradations.
arXiv Detail & Related papers (2025-05-24T12:52:10Z) - A Modular Conditional Diffusion Framework for Image Reconstruction [3.451075831610783]
Diffusion Probabilistic Models (DPMs) have been recently utilized to deal with various blind image restoration (IR) tasks.
We propose a modular diffusion probabilistic IR framework (DP-IR), which allows us to combine the performance benefits of existing pre-trained state-of-the-art IR networks and generative DPMs.
We evaluate our model on four benchmarks for the tasks of burst JDD-SR, dynamic scene deblurring, and super-resolution.
arXiv Detail & Related papers (2024-11-08T22:11:29Z) - LoRA-IR: Taming Low-Rank Experts for Efficient All-in-One Image Restoration [62.3751291442432]
We propose LoRA-IR, a flexible framework that dynamically leverages compact low-rank experts to facilitate efficient all-in-one image restoration.
LoRA-IR consists of two training stages: degradation-guided pre-training and parameter-efficient fine-tuning.
Experiments demonstrate that LoRA-IR achieves SOTA performance across 14 IR tasks and 29 benchmarks, while maintaining computational efficiency.
arXiv Detail & Related papers (2024-10-20T13:00:24Z) - Improving Generalization of Neural Vehicle Routing Problem Solvers Through the Lens of Model Architecture [9.244633039170186]
We propose a plug-and-play Entropy-based Scaling Factor (ESF) and a Distribution-Specific (DS) decoder.<n>ESF adjusts the attention weight pattern of the model towards familiar ones discovered during training when solving VRPs of varying sizes.<n>DS decoder explicitly models VRPs of multiple training distribution patterns through multiple auxiliary light decoders, expanding the model representation space.
arXiv Detail & Related papers (2024-06-10T09:03:17Z) - ASR: Attention-alike Structural Re-parameterization [53.019657810468026]
We propose a simple-yet-effective attention-alike structural re- parameterization (ASR) that allows us to achieve SRP for a given network while enjoying the effectiveness of the attention mechanism.
In this paper, we conduct extensive experiments from a statistical perspective and discover an interesting phenomenon Stripe Observation, which reveals that channel attention values quickly approach some constant vectors during training.
arXiv Detail & Related papers (2023-04-13T08:52:34Z) - Dynamics Generalization via Information Bottleneck in Deep Reinforcement
Learning [90.93035276307239]
We propose an information theoretic regularization objective and an annealing-based optimization method to achieve better generalization ability in RL agents.
We demonstrate the extreme generalization benefits of our approach in different domains ranging from maze navigation to robotic tasks.
This work provides a principled way to improve generalization in RL by gradually removing information that is redundant for task-solving.
arXiv Detail & Related papers (2020-08-03T02:24:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.