論文の概要: Dynamic Bayesian Item Response Model with Decomposition (D-BIRD): Modeling Cohort and Individual Learning Over Time
- arxiv url: http://arxiv.org/abs/2506.21723v1
- Date: Thu, 26 Jun 2025 19:14:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-30 21:12:22.986471
- Title: Dynamic Bayesian Item Response Model with Decomposition (D-BIRD): Modeling Cohort and Individual Learning Over Time
- Title(参考訳): 分解を伴う動的ベイズ項目応答モデル(D-BIRD):時間とともにコホートと個別学習をモデル化する
- Authors: Hansol Lee, Jason B. Cho, David S. Matteson, Benjamin W. Domingue,
- Abstract要約: D-BIRD(D-BIRD:動的項目応答モデル)を提案する。
シミュレーションでパラメータ回復を評価し,実世界の個別学習データを用いてモデルを実証する。
- 参考スコア(独自算出の注目度): 3.9819358750163474
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present D-BIRD, a Bayesian dynamic item response model for estimating student ability from sparse, longitudinal assessments. By decomposing ability into a cohort trend and individual trajectory, D-BIRD supports interpretable modeling of learning over time. We evaluate parameter recovery in simulation and demonstrate the model using real-world personalized learning data.
- Abstract(参考訳): D-BIRD, ベイズ動的項目応答モデルについて, 疎度, 縦断的評価から学生の能力を評価する。
D-BIRDはコホート傾向と個々の軌道に能力を分解することで、時間とともに学習の解釈可能なモデリングを支援する。
シミュレーションでパラメータ回復を評価し,実世界の個別学習データを用いてモデルを実証する。
関連論文リスト
- Disentangling Length Bias In Preference Learning Via Response-Conditioned Modeling [87.17041933863041]
RLHF(Reinforcement Learning from Human Feedback)は,大規模言語モデル(LLM)の整合化に成功している。
我々は、長さバイアス軽減と長さ指示に従うモデルの性能を高めるために、$textbfR$esponse-$textbfc$onditioned $textbfB$radley-$textbfT$erry (Rc-BT)モデルを導入する。
また、報酬モデルと直接ポリシー最適化のためにRc-BTモデルを利用するRc-RMおよびRc-DPOアルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-02-02T14:50:25Z) - Supervised Score-Based Modeling by Gradient Boosting [49.556736252628745]
本稿では,スコアマッチングを組み合わせた勾配向上アルゴリズムとして,SSM(Supervised Score-based Model)を提案する。
推測時間と予測精度のバランスをとるため,SSMの学習とサンプリングに関する理論的解析を行った。
我々のモデルは、精度と推測時間の両方で既存のモデルより優れています。
論文 参考訳(メタデータ) (2024-11-02T07:06:53Z) - Distilled Datamodel with Reverse Gradient Matching [74.75248610868685]
オフライントレーニングとオンライン評価段階を含む,データ影響評価のための効率的なフレームワークを提案する。
提案手法は, 直接再学習法と比較して, プロセスの大幅な高速化を図りながら, 同等のモデル行動評価を実現する。
論文 参考訳(メタデータ) (2024-04-22T09:16:14Z) - ZhiJian: A Unifying and Rapidly Deployable Toolbox for Pre-trained Model
Reuse [59.500060790983994]
本稿では、PyTorchバックエンドを利用して、モデル再利用のための包括的でユーザフレンドリなツールボックスであるZhiJianを紹介する。
ZhiJianは、PTMによるターゲットアーキテクチャ構築、PTMによるターゲットモデルチューニング、およびPTMに基づく推論を含む、モデル再利用に関するさまざまな視点を統一する新しいパラダイムを提示している。
論文 参考訳(メタデータ) (2023-08-17T19:12:13Z) - Neural Superstatistics for Bayesian Estimation of Dynamic Cognitive
Models [2.7391842773173334]
我々は,時間変化パラメータと時間不変パラメータの両方を復元できるベイズ推論のシミュレーションに基づくディープラーニング手法を開発した。
この結果から,ディープラーニングアプローチは時間的ダイナミクスを捉える上で極めて効率的であることが示唆された。
論文 参考訳(メタデータ) (2022-11-23T17:42:53Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Learning Dynamics Models for Model Predictive Agents [28.063080817465934]
モデルに基づく強化学習は、データからテクトダイナミックスモデルを学習し、そのモデルを使用して振る舞いを最適化する。
本稿では, 動的モデル学習における設計選択の役割を, 基礎構造モデルとの比較により明らかにすることを目的としている。
論文 参考訳(メタデータ) (2021-09-29T09:50:25Z) - Demystifying Deep Learning in Predictive Spatio-Temporal Analytics: An
Information-Theoretic Framework [20.28063653485698]
ディープラーニングモデル設計と情報理論解析のための包括的なフレームワークを提供する。
まず、インタラクティブに接続された新しいディープリカレントニューラルネットワーク(I$2$DRNN)モデルを開発し、実演する。
第二に、設計モデルがPSTAタスクのマルチスケール時間依存性を学習できることを理論的に証明するために、情報理論解析を提供する。
論文 参考訳(メタデータ) (2020-09-14T10:05:14Z) - Model Embedding Model-Based Reinforcement Learning [4.566180616886624]
モデルベース強化学習(MBRL)は、モデルフリー強化学習(MFRL)よりもサンプル効率が優れていることを示す。
しかし、データ生成の容易さとモデルのバイアスとの間には、依然としてトレードオフがある。
本稿では,確率的強化学習の枠組みとして,シンプルでエレガントなモデル埋め込み型強化学習(MEMB)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-16T15:10:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。