論文の概要: Adversarial Threats in Quantum Machine Learning: A Survey of Attacks and Defenses
- arxiv url: http://arxiv.org/abs/2506.21842v1
- Date: Fri, 27 Jun 2025 01:19:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-30 21:12:23.043726
- Title: Adversarial Threats in Quantum Machine Learning: A Survey of Attacks and Defenses
- Title(参考訳): 量子機械学習における敵対的脅威:攻撃と防御に関する調査
- Authors: Archisman Ghosh, Satwik Kundu, Swaroop Ghosh,
- Abstract要約: 量子機械学習(QML)は、量子コンピューティングと古典的な機械学習を統合して、分類、回帰、生成タスクを解決する。
本章では、クラウドベースのデプロイメント、ハイブリッドアーキテクチャ、量子生成モデルにおける脆弱性に焦点を当て、QMLシステム特有の敵の脅威について検討する。
- 参考スコア(独自算出の注目度): 2.089191490381739
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Quantum Machine Learning (QML) integrates quantum computing with classical machine learning, primarily to solve classification, regression and generative tasks. However, its rapid development raises critical security challenges in the Noisy Intermediate-Scale Quantum (NISQ) era. This chapter examines adversarial threats unique to QML systems, focusing on vulnerabilities in cloud-based deployments, hybrid architectures, and quantum generative models. Key attack vectors include model stealing via transpilation or output extraction, data poisoning through quantum-specific perturbations, reverse engineering of proprietary variational quantum circuits, and backdoor attacks. Adversaries exploit noise-prone quantum hardware and insufficiently secured QML-as-a-Service (QMLaaS) workflows to compromise model integrity, ownership, and functionality. Defense mechanisms leverage quantum properties to counter these threats. Noise signatures from training hardware act as non-invasive watermarks, while hardware-aware obfuscation techniques and ensemble strategies disrupt cloning attempts. Emerging solutions also adapt classical adversarial training and differential privacy to quantum settings, addressing vulnerabilities in quantum neural networks and generative architectures. However, securing QML requires addressing open challenges such as balancing noise levels for reliability and security, mitigating cross-platform attacks, and developing quantum-classical trust frameworks. This chapter summarizes recent advances in attacks and defenses, offering a roadmap for researchers and practitioners to build robust, trustworthy QML systems resilient to evolving adversarial landscapes.
- Abstract(参考訳): 量子機械学習(QML)は、量子コンピューティングと古典的な機械学習を統合し、主に分類、回帰、生成タスクを解決する。
しかし、その急速な開発は、NISQ(Noisy Intermediate-Scale Quantum)時代において重要なセキュリティ上の課題を提起している。
本章では、クラウドベースのデプロイメント、ハイブリッドアーキテクチャ、量子生成モデルにおける脆弱性に焦点を当て、QMLシステム特有の敵の脅威について検討する。
主要な攻撃ベクトルには、トランスパイルや出力抽出によるモデル盗難、量子固有の摂動によるデータ中毒、独自の変動量子回路のリバースエンジニアリング、バックドア攻撃などがある。
モデルの完全性、オーナシップ、機能性を損なうために、ノイズが発生しやすい量子ハードウェアと、十分にセキュアなQML-as-a-Service(QMLaaS)ワークフローを利用する。
防御機構はこれらの脅威に対抗するために量子特性を利用する。
トレーニングハードウェアからのノイズシグネチャは非侵襲的な透かしとして機能し、ハードウェア対応の難読化技術とアンサンブル戦略はクローン化の試みを妨害する。
新興ソリューションはまた、量子ニューラルネットワークや生成アーキテクチャの脆弱性に対処し、古典的な敵のトレーニングと差分プライバシーを量子設定に適用する。
しかし、QMLを確保するには、信頼性とセキュリティのためのノイズレベルのバランス、クロスプラットフォーム攻撃の緩和、量子古典的信頼フレームワークの開発といったオープンな課題に対処する必要がある。
この章は、最近の攻撃と防御の進歩を要約し、研究者や実践者が、敵の風景の進化に耐性のある堅牢で信頼できるQMLシステムを構築するためのロードマップを提供する。
関連論文リスト
- VQC-MLPNet: An Unconventional Hybrid Quantum-Classical Architecture for Scalable and Robust Quantum Machine Learning [60.996803677584424]
変分量子回路(VQC)は、量子機械学習のための新しい経路を提供する。
それらの実用的応用は、制約付き線形表現性、最適化課題、量子ハードウェアノイズに対する鋭敏感といった固有の制限によって妨げられている。
この研究は、これらの障害を克服するために設計されたスケーラブルで堅牢なハイブリッド量子古典アーキテクチャであるVQC-MLPNetを導入している。
論文 参考訳(メタデータ) (2025-06-12T01:38:15Z) - Practical hybrid PQC-QKD protocols with enhanced security and performance [44.8840598334124]
我々は,量子古典ネットワーク内でQKDとPQCが相互運用するハイブリッドプロトコルを開発した。
特に、それぞれのアプローチの個々の性能に対して、スピードと/またはセキュリティを向上する可能性のある、異なるハイブリッド設計について検討する。
論文 参考訳(メタデータ) (2024-11-02T00:02:01Z) - QML-IDS: Quantum Machine Learning Intrusion Detection System [1.2016264781280588]
本稿では量子コンピューティングと古典コンピューティングを組み合わせた新しい侵入検知システムQML-IDSを提案する。
QML-IDSはQuantum Machine Learning(QML)手法を用いてネットワークパターンを分析し、攻撃活動を検出する。
我々は,QML-IDSが攻撃検出に有効であることを示し,バイナリおよびマルチクラス分類タスクで良好に動作することを示す。
論文 参考訳(メタデータ) (2024-10-07T13:07:41Z) - Security Concerns in Quantum Machine Learning as a Service [2.348041867134616]
量子機械学習(Quantum Machine Learning、QML)は、変分量子回路(VQC)を用いて機械学習タスクに取り組むアルゴリズムのカテゴリである。
近年の研究では、限られたトレーニングデータサンプルからQMLモデルを効果的に一般化できることが示されている。
QMLは、古典的および量子コンピューティングリソースの両方を利用するハイブリッドモデルである。
論文 参考訳(メタデータ) (2024-08-18T18:21:24Z) - GQHAN: A Grover-inspired Quantum Hard Attention Network [53.96779043113156]
GQHAM(Grover-inspired Quantum Hard Attention Mechanism)を提案する。
GQHANは、既存の量子ソフト自己保持機構の有効性を超越して、非微分可能性ハードルをかなり上回っている。
GQHANの提案は、将来の量子コンピュータが大規模データを処理する基盤を築き、量子コンピュータビジョンの開発を促進するものである。
論文 参考訳(メタデータ) (2024-01-25T11:11:16Z) - Predominant Aspects on Security for Quantum Machine Learning: Literature Review [0.0]
量子機械学習(Quantum Machine Learning, QML)は、量子コンピューティングと古典的な機械学習の有望な交わりとして登場した。
本稿では,セキュリティ上の懸念と強みがQMLとどのように結びついているのかを,系統的な文献レビューを用いて論じる。
論文 参考訳(メタデータ) (2024-01-15T15:35:43Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
量子機械学習(QML)は、量子コンピューティングの発展に頼って、大規模な複雑な機械学習問題を探求する、有望な分野として登場した。
本稿では、量子データ上で動作し、量子回路パラメータの学習を分散的に共有できる初めての完全量子連合学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:19:27Z) - Entangling Quantum Generative Adversarial Networks [53.25397072813582]
量子生成逆数ネットワーク(量子GAN, EQ-GAN)のための新しいタイプのアーキテクチャを提案する。
EQ-GANはコヒーレントなエラーに対してさらなる堅牢性を示し、Google Sycamore超伝導量子プロセッサで実験的にEQ-GANの有効性を示す。
論文 参考訳(メタデータ) (2021-04-30T20:38:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。