TOAST: Task-Oriented Adaptive Semantic Transmission over Dynamic Wireless Environments
- URL: http://arxiv.org/abs/2506.21900v1
- Date: Fri, 27 Jun 2025 04:36:30 GMT
- Title: TOAST: Task-Oriented Adaptive Semantic Transmission over Dynamic Wireless Environments
- Authors: Sheng Yun, Jianhua Pei, Ping Wang,
- Abstract summary: TOAST (Task-Oriented Adaptive Semantic Transmission) is a unified framework designed to address the core challenge of multi-task optimization in wireless environments.<n>We formulate adaptive task balancing as a Markov decision process, employing deep reinforcement learning to dynamically adjust the trade-off between image reconstruction fidelity and semantic classification accuracy.<n>We integrate module-specific Low-Rank Adaptation (LoRA) mechanisms throughout our Swin Transformer-based joint source-channel coding architecture.
- Score: 3.3107717550009865
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The evolution toward 6G networks demands a fundamental shift from bit-centric transmission to semantic-aware communication that emphasizes task-relevant information. This work introduces TOAST (Task-Oriented Adaptive Semantic Transmission), a unified framework designed to address the core challenge of multi-task optimization in dynamic wireless environments through three complementary components. First, we formulate adaptive task balancing as a Markov decision process, employing deep reinforcement learning to dynamically adjust the trade-off between image reconstruction fidelity and semantic classification accuracy based on real-time channel conditions. Second, we integrate module-specific Low-Rank Adaptation (LoRA) mechanisms throughout our Swin Transformer-based joint source-channel coding architecture, enabling parameter-efficient fine-tuning that dramatically reduces adaptation overhead while maintaining full performance across diverse channel impairments including Additive White Gaussian Noise (AWGN), fading, phase noise, and impulse interference. Third, we incorporate an Elucidating diffusion model that operates in the latent space to restore features corrupted by channel noises, providing substantial quality improvements compared to baseline approaches. Extensive experiments across multiple datasets demonstrate that TOAST achieves superior performance compared to baseline approaches, with significant improvements in both classification accuracy and reconstruction quality at low Signal-to-Noise Ratio (SNR) conditions while maintaining robust performance across all tested scenarios.
Related papers
- Backscatter Device-aided Integrated Sensing and Communication: A Pareto Optimization Framework [59.30060797118097]
Integrated sensing and communication (ISAC) systems potentially encounter significant performance degradation in densely obstructed urban non-line-of-sight scenarios.<n>This paper proposes a backscatter approximation (BD)-assisted ISAC system, which leverages passive BDs naturally distributed in environments of enhancement.
arXiv Detail & Related papers (2025-07-12T17:11:06Z) - Adaptive Control Attention Network for Underwater Acoustic Localization and Domain Adaptation [8.017203108408973]
Localizing acoustic sound sources in the ocean is a challenging task due to the complex and dynamic nature of the environment.<n>We propose a multi-branch network architecture designed to accurately predict the distance between a moving acoustic source and a receiver.<n>Our proposed method outperforms state-of-the-art (SOTA) approaches in similar settings.
arXiv Detail & Related papers (2025-06-20T18:13:30Z) - Latent Diffusion Model Based Denoising Receiver for 6G Semantic Communication: From Stochastic Differential Theory to Application [55.42071552739813]
We propose a novel semantic communication framework empowered by generative artificial intelligence (GAI)<n>A latent diffusion model (LDM)-based semantic communication framework is proposed that combines a variational autoencoder for semantic features extraction.<n>The proposed system is a training-free framework that supports zero-shot generalization, and achieves superior performance under low-SNR and out-of-distribution conditions.
arXiv Detail & Related papers (2025-06-06T03:20:32Z) - FEAT: Full-Dimensional Efficient Attention Transformer for Medical Video Generation [14.903360987684483]
We propose FEAT, a full-dimensional efficient attention Transformer for high-quality dynamic medical videos.<n>We evaluate FEAT on standard benchmarks and downstream tasks, demonstrating that FEAT-S, with only 23% of the parameters of the state-of-the-art model Endora, achieves comparable or even superior performance.
arXiv Detail & Related papers (2025-06-05T12:31:02Z) - Distributionally Robust Wireless Semantic Communication with Large AI Models [120.29419104482793]
6G wireless systems are expected to support massive volumes of data with ultra-low latency.<n> conventional bit-level transmission strategies cannot support the efficiency and adaptability required by modern, data-intensive applications.<n>The concept of semantic communication (SemCom) addresses this limitation by focusing on transmitting task-relevant semantic information instead of raw data.
arXiv Detail & Related papers (2025-05-28T04:03:57Z) - Plug-and-Play AMC: Context Is King in Training-Free, Open-Set Modulation with LLMs [22.990537822143907]
Automatic Modulation Classification (AMC) is critical for efficient spectrum management and robust wireless communications.<n>We propose an innovative framework that integrates traditional signal processing techniques with Large-Language Models.<n>This work lays the foundation for scalable, interpretable, and versatile signal classification systems in next-generation wireless networks.
arXiv Detail & Related papers (2025-05-06T02:07:47Z) - Optimal Transport Adapter Tuning for Bridging Modality Gaps in Few-Shot Remote Sensing Scene Classification [80.83325513157637]
Few-Shot Remote Sensing Scene Classification (FS-RSSC) presents the challenge of classifying remote sensing images with limited labeled samples.<n>We propose a novel Optimal Transport Adapter Tuning (OTAT) framework aimed at constructing an ideal Platonic representational space.
arXiv Detail & Related papers (2025-03-19T07:04:24Z) - ALOcc: Adaptive Lifting-based 3D Semantic Occupancy and Cost Volume-based Flow Prediction [89.89610257714006]
Existing methods prioritize higher accuracy to cater to the demands of these tasks.
We introduce a series of targeted improvements for 3D semantic occupancy prediction and flow estimation.
Our purelytemporalal architecture framework, named ALOcc, achieves an optimal tradeoff between speed and accuracy.
arXiv Detail & Related papers (2024-11-12T11:32:56Z) - Latent Diffusion Model-Enabled Low-Latency Semantic Communication in the Presence of Semantic Ambiguities and Wireless Channel Noises [18.539501941328393]
This paper develops a latent diffusion model-enabled SemCom system to handle outliers in source data.<n>A lightweight single-layer latent space transformation adapter completes one-shot learning at the transmitter.<n>An end-to-end consistency distillation strategy is used to distill the diffusion models trained in latent space.
arXiv Detail & Related papers (2024-06-09T23:39:31Z) - Hybrid Spectral Denoising Transformer with Guided Attention [34.34075175179669]
We present a Hybrid Spectral Denoising Transformer (HSDT) for hyperspectral image denoising.
Our HSDT significantly outperforms the existing state-of-the-art methods while maintaining low computational overhead.
arXiv Detail & Related papers (2023-03-16T02:24:31Z) - AdaStereo: An Efficient Domain-Adaptive Stereo Matching Approach [50.855679274530615]
We present a novel domain-adaptive approach called AdaStereo to align multi-level representations for deep stereo matching networks.
Our models achieve state-of-the-art cross-domain performance on multiple benchmarks, including KITTI, Middlebury, ETH3D and DrivingStereo.
Our method is robust to various domain adaptation settings, and can be easily integrated into quick adaptation application scenarios and real-world deployments.
arXiv Detail & Related papers (2021-12-09T15:10:47Z) - Conditioning Trick for Training Stable GANs [70.15099665710336]
We propose a conditioning trick, called difference departure from normality, applied on the generator network in response to instability issues during GAN training.
We force the generator to get closer to the departure from normality function of real samples computed in the spectral domain of Schur decomposition.
arXiv Detail & Related papers (2020-10-12T16:50:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.