Unifying communication paradigms in delegated quantum computing
- URL: http://arxiv.org/abs/2506.21988v1
- Date: Fri, 27 Jun 2025 07:54:43 GMT
- Title: Unifying communication paradigms in delegated quantum computing
- Authors: Fabian Wiesner, Jens Eisert, Anna Pappa,
- Abstract summary: Delegated quantum computing (DQC) allows clients with low quantum capabilities to outsource computations to a server hosting a quantum computer.<n>The overall process of setting up and conducting the computation encompasses a sequence of three stages: preparing the qubits, entangling the qubits to obtain the resource state, and measuring the qubits to run the computation.
- Score: 0.3277163122167433
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Delegated quantum computing (DQC) allows clients with low quantum capabilities to outsource computations to a server hosting a quantum computer. This process is typically envisioned within the measurement-based quantum computing framework, as it naturally facilitates blindness of inputs and computation. Hence, the overall process of setting up and conducting the computation encompasses a sequence of three stages: preparing the qubits, entangling the qubits to obtain the resource state, and measuring the qubits to run the computation. There are two primary approaches to distributing these stages between the client and the server that impose different constraints on cryptographic techniques and experimental implementations. In the prepare-and-send setting, the client prepares the qubits and sends them to the server, while in the receive-and-measure setting, the client receives the qubits from the server and measures them. Although these settings have been extensively studied independently, their interrelation and whether setting-dependent theoretical constraints are inevitable remain unclear. By implementing the key components of most DQC protocols in the respective missing setting, we provide a method to build prospective protocols in both settings simultaneously and to translate existing protocols from one setting into the other.
Related papers
- Selectively Blind Quantum Computation [14.216196859415081]
We introduce Selectively Blind Quantum Computing (SBQC), a novel functionality that allows the client to hide one among a known set of possible computations.<n>This approach reduces qubit communication drastically and demonstrates the trade-off between information leaked to the server and communication cost.
arXiv Detail & Related papers (2025-04-24T14:36:00Z) - Verifiable End-to-End Delegated Variational Quantum Algorithms [0.0]
Variational quantum algorithms (VQAs) have emerged as promising candidates for solving complex optimization and machine learning tasks on near-term quantum hardware.<n> executing quantum operations remains challenging for small-scale users because of several hardware constraints.<n>We introduce a framework for delegated variational quantum algorithms, where a client with limited quantum capabilities delegates the execution of a VQA to a more powerful quantum server.
arXiv Detail & Related papers (2025-04-21T19:36:42Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - On-Chip Hardware-Aware Quantization for Mixed Precision Neural Networks [52.97107229149988]
We propose an On-Chip Hardware-Aware Quantization framework, performing hardware-aware mixed-precision quantization on deployed edge devices.
For efficiency metrics, we built an On-Chip Quantization Aware pipeline, which allows the quantization process to perceive the actual hardware efficiency of the quantization operator.
For accuracy metrics, we propose Mask-Guided Quantization Estimation technology to effectively estimate the accuracy impact of operators in the on-chip scenario.
arXiv Detail & Related papers (2023-09-05T04:39:34Z) - Multi-client distributed blind quantum computation with the Qline
architecture [0.0]
Universal blind quantum computing allows users with minimal quantum resources to delegate a quantum computation to a remote quantum server.
We propose and experimentally demonstrate a lightweight multi-client blind quantum computation protocol based on a novel linear quantum network configuration.
arXiv Detail & Related papers (2023-06-08T13:50:02Z) - Robust and efficient verification of graph states in blind
measurement-based quantum computation [52.70359447203418]
Blind quantum computation (BQC) is a secure quantum computation method that protects the privacy of clients.
It is crucial to verify whether the resource graph states are accurately prepared in the adversarial scenario.
Here, we propose a robust and efficient protocol for verifying arbitrary graph states with any prime local dimension.
arXiv Detail & Related papers (2023-05-18T06:24:45Z) - Oblivious Quantum Computation and Delegated Multiparty Quantum
Computation [61.12008553173672]
We propose a new concept, oblivious computation quantum computation, where secrecy of the input qubits and the program to identify the quantum gates are required.
Exploiting quantum teleportation, we propose a two-server protocol for this task.
Also, we discuss delegated multiparty quantum computation, in which, several users ask multiparty quantum computation to server(s) only using classical communications.
arXiv Detail & Related papers (2022-11-02T09:01:33Z) - QSAN: A Near-term Achievable Quantum Self-Attention Network [73.15524926159702]
Self-Attention Mechanism (SAM) is good at capturing the internal connections of features.
A novel Quantum Self-Attention Network (QSAN) is proposed for image classification tasks on near-term quantum devices.
arXiv Detail & Related papers (2022-07-14T12:22:51Z) - Equivalence in delegated quantum computing [0.7734726150561088]
Delegated quantum computing (DQC) enables limited clients to perform operations that are outside their capabilities remotely on a quantum server.
Two approaches are followed in DQC that demand completely different operations on the clients' side.
In this work, we provide a novel stringent definition of the equivalence of protocols and show that these distinct DQC settings are, in fact, equivalent in this sense.
arXiv Detail & Related papers (2022-06-15T12:06:25Z) - Delegating Multi-Party Quantum Computations vs. Dishonest Majority in
Two Quantum Rounds [0.0]
Multi-Party Quantum Computation (MPQC) has attracted a lot of attention as a potential killer-app for quantum networks.
We present a composable protocol achieving blindness and verifiability even in the case of a single honest client.
arXiv Detail & Related papers (2021-02-25T15:58:09Z) - Communication Cost of Quantum Processes [49.281159740373326]
A common scenario in distributed computing involves a client who asks a server to perform a computation on a remote computer.
An important problem is to determine the minimum amount of communication needed to specify the desired computation.
We analyze the total amount of (classical and quantum) communication needed by a server in order to accurately execute a quantum process chosen by a client.
arXiv Detail & Related papers (2020-02-17T08:51:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.