Single-Scanline Relative Pose Estimation for Rolling Shutter Cameras
- URL: http://arxiv.org/abs/2506.22069v1
- Date: Fri, 27 Jun 2025 10:00:21 GMT
- Title: Single-Scanline Relative Pose Estimation for Rolling Shutter Cameras
- Authors: Petr Hruby, Marc Pollefeys,
- Abstract summary: We propose an approach for estimating the relative pose between rolling shutter cameras using the intersections of line projections with a single scanline per image.<n>Alternatively, scanlines can be selected within a single image, enabling single-view relative pose estimation for scanlines of rolling shutter cameras.
- Score: 56.39904484784127
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a novel approach for estimating the relative pose between rolling shutter cameras using the intersections of line projections with a single scanline per image. This allows pose estimation without explicitly modeling camera motion. Alternatively, scanlines can be selected within a single image, enabling single-view relative pose estimation for scanlines of rolling shutter cameras. Our approach is designed as a foundational building block for rolling shutter structure-from-motion (SfM), where no motion model is required, and each scanline's pose can be computed independently. % We classify minimal solvers for this problem in both generic and specialized settings, including cases with parallel lines and known gravity direction, assuming known intrinsics and no lens distortion. Furthermore, we develop minimal solvers for the parallel-lines scenario, both with and without gravity priors, by leveraging connections between this problem and the estimation of 2D structure from 1D cameras. % Experiments on rolling shutter images from the Fastec dataset demonstrate the feasibility of our approach for initializing rolling shutter SfM, highlighting its potential for further development. % The code will be made publicly available.
Related papers
- No Pose, No Problem: Surprisingly Simple 3D Gaussian Splats from Sparse Unposed Images [100.80376573969045]
NoPoSplat is a feed-forward model capable of reconstructing 3D scenes parameterized by 3D Gaussians from multi-view images.
Our model achieves real-time 3D Gaussian reconstruction during inference.
This work makes significant advances in pose-free generalizable 3D reconstruction and demonstrates its applicability to real-world scenarios.
arXiv Detail & Related papers (2024-10-31T17:58:22Z) - SRPose: Two-view Relative Pose Estimation with Sparse Keypoints [51.49105161103385]
SRPose is a sparse keypoint-based framework for two-view relative pose estimation in camera-to-world and object-to-camera scenarios.
It achieves competitive or superior performance compared to state-of-the-art methods in terms of accuracy and speed.
It is robust to different image sizes and camera intrinsics, and can be deployed with low computing resources.
arXiv Detail & Related papers (2024-07-11T05:46:35Z) - Vanishing Point Estimation in Uncalibrated Images with Prior Gravity
Direction [82.72686460985297]
We tackle the problem of estimating a Manhattan frame.
We derive two new 2-line solvers, one of which does not suffer from singularities affecting existing solvers.
We also design a new non-minimal method, running on an arbitrary number of lines, to boost the performance in local optimization.
arXiv Detail & Related papers (2023-08-21T13:03:25Z) - ObjectMatch: Robust Registration using Canonical Object Correspondences [21.516657643120375]
We present ObjectMatch, a semantic and object-centric camera pose estimator for RGB-D SLAM pipelines.
In registering RGB-D sequences, our method outperforms cutting-edge SLAM baselines in challenging, low-frame-rate scenarios.
arXiv Detail & Related papers (2022-12-05T02:38:08Z) - 2D LiDAR and Camera Fusion Using Motion Cues for Indoor Layout
Estimation [2.6905021039717987]
A ground robot explores an indoor space with a single floor and vertical walls, and collects a sequence of intensity images and 2D LiDAR datasets.
The alignment of sensor outputs and image segmentation are computed jointly by aligning LiDAR points.
The ambiguity in images for ground-wall boundary extraction is removed with the assistance of LiDAR observations.
arXiv Detail & Related papers (2022-04-24T06:26:02Z) - DeepI2P: Image-to-Point Cloud Registration via Deep Classification [71.3121124994105]
DeepI2P is a novel approach for cross-modality registration between an image and a point cloud.
Our method estimates the relative rigid transformation between the coordinate frames of the camera and Lidar.
We circumvent the difficulty by converting the registration problem into a classification and inverse camera projection optimization problem.
arXiv Detail & Related papers (2021-04-08T04:27:32Z) - Calibrated and Partially Calibrated Semi-Generalized Homographies [65.29477277713205]
We propose the first minimal solutions for estimating the semi-generalized homography given a perspective and a generalized camera.
The proposed solvers are stable and efficient as demonstrated by a number of synthetic and real-world experiments.
arXiv Detail & Related papers (2021-03-11T08:56:24Z) - Image Stitching and Rectification for Hand-Held Cameras [17.694946451997815]
We derive a new differential homography that can account for the scanline-varying camera poses in Rolling Shutter (RS) cameras.
We show superior performance over state-of-the-art methods both in RS image stitching and rectification, especially for images captured by hand-held shaking cameras.
arXiv Detail & Related papers (2020-08-20T23:31:23Z) - PrimA6D: Rotational Primitive Reconstruction for Enhanced and Robust 6D
Pose Estimation [11.873744190924599]
We introduce a rotational primitive prediction based 6D object pose estimation using a single image as an input.
We leverage a Variational AutoEncoder (VAE) to learn this underlying primitive and its associated keypoints.
When evaluated over public datasets, our method yields a notable improvement over LINEMOD, Occlusion LINEMOD, and the Y-induced dataset.
arXiv Detail & Related papers (2020-06-14T03:55:42Z) - Indoor Layout Estimation by 2D LiDAR and Camera Fusion [3.2387553628943535]
This paper presents an algorithm for indoor layout estimation and reconstruction through the fusion of a sequence of captured images and LiDAR data sets.
In the proposed system, a movable platform collects both intensity images and 2D LiDAR information.
arXiv Detail & Related papers (2020-01-15T16:43:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.