論文の概要: Beyond ReLU: How Activations Affect Neural Kernels and Random Wide Networks
- arxiv url: http://arxiv.org/abs/2506.22429v1
- Date: Fri, 27 Jun 2025 17:56:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-30 21:12:23.317958
- Title: Beyond ReLU: How Activations Affect Neural Kernels and Random Wide Networks
- Title(参考訳): Beyond ReLU: アクティベーションはニューラルカーネルとランダム・ワイド・ネットワークにどのように影響するか
- Authors: David Holzmüller, Max Schölpple,
- Abstract要約: 我々は、非滑らか性のみがゼロである典型的な活性化関数に対して、より一般的なRKHSの特性を提供する。
以上の結果から, 無限に滑らかでないアクティベーションの幅広いクラスは, 異なるネットワーク深さで等価なタンジェントを生成する一方, アクティベーションは等価でないRKHSを生成することがわかった。
- 参考スコア(独自算出の注目度): 6.1003048508889535
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While the theory of deep learning has made some progress in recent years, much of it is limited to the ReLU activation function. In particular, while the neural tangent kernel (NTK) and neural network Gaussian process kernel (NNGP) have given theoreticians tractable limiting cases of fully connected neural networks, their properties for most activation functions except for powers of the ReLU function are poorly understood. Our main contribution is to provide a more general characterization of the RKHS of these kernels for typical activation functions whose only non-smoothness is at zero, such as SELU, ELU, or LeakyReLU. Our analysis also covers a broad set of special cases such as missing biases, two-layer networks, or polynomial activations. Our results show that a broad class of not infinitely smooth activations generate equivalent RKHSs at different network depths, while polynomial activations generate non-equivalent RKHSs. Finally, we derive results for the smoothness of NNGP sample paths, characterizing the smoothness of infinitely wide neural networks at initialization.
- Abstract(参考訳): 近年、深層学習の理論は進歩しているが、その多くはReLU活性化関数に限られている。
特に、ニューラル・タンジェント・カーネル(NTK)とニューラル・ネットワーク・ガウシアン・プロセス・カーネル(NNGP)は、完全に連結されたニューラル・ネットワークの引き抜き可能な制限ケースを与えてきたが、ReLU関数のパワーを除くほとんどのアクティベーション関数に対するそれらの特性は理解されていない。
我々の主な貢献は、SELU、ELU、LeakyReLUのような非滑らか性しか持たない典型的な活性化関数に対して、これらのカーネルのRKHSのより一般的な特徴を提供することである。
分析では、バイアスの欠如、二層ネットワーク、多項式の活性化など、様々な特殊なケースについても取り上げている。
以上の結果から, 無限に滑らかでないアクティベーションの広いクラスは, 異なるネットワーク深さで等価なRKHSを生成する一方, 多項式アクティベーションは等価でないRKHSを生成することがわかった。
最後に、NNGPサンプルパスの滑らかさを導出し、初期化時に無限大のニューラルネットワークの滑らかさを特徴付ける。
関連論文リスト
- ReLUs Are Sufficient for Learning Implicit Neural Representations [17.786058035763254]
暗黙的神経表現学習におけるReLUアクティベーション関数の使用について再考する。
2次B-スプラインウェーブレットにインスパイアされ、ディープニューラルネットワーク(DNN)の各層にReLUニューロンに一連の簡単な制約を組み込む。
我々は、一般的な信念とは対照的に、ReLUニューロンのみからなるDNNに基づいて最先端のINRを学習できることを実証した。
論文 参考訳(メタデータ) (2024-06-04T17:51:08Z) - Novel Kernel Models and Exact Representor Theory for Neural Networks Beyond the Over-Parameterized Regime [52.00917519626559]
本稿では、ニューラルネットワークの2つのモデルと、任意の幅、深さ、トポロジーのニューラルネットワークに適用可能なトレーニングについて述べる。
また、局所外在性神経核(LeNK)の観点から、非正規化勾配降下を伴う階層型ニューラルネットワークトレーニングのための正確な表現子理論を提示する。
この表現論は、ニューラルネットワークトレーニングにおける高次統計学の役割と、ニューラルネットワークのカーネルモデルにおけるカーネル進化の影響について洞察を与える。
論文 参考訳(メタデータ) (2024-05-24T06:30:36Z) - Sparsity-depth Tradeoff in Infinitely Wide Deep Neural Networks [22.083873334272027]
我々は,スペーサーネットワークが,様々なデータセットの浅い深度で非スパースネットワークより優れていることを観察した。
カーネルリッジ回帰の一般化誤差に関する既存の理論を拡張した。
論文 参考訳(メタデータ) (2023-05-17T20:09:35Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
しきい値アクティベートを伴うディープニューラルネットワークの重み劣化正規化学習問題について検討した。
ネットワークの特定の層でデータセットを破砕できる場合に、簡易な凸最適化の定式化を導出する。
論文 参考訳(メタデータ) (2023-03-06T18:59:13Z) - Gradient Descent in Neural Networks as Sequential Learning in RKBS [63.011641517977644]
初期重みの有限近傍にニューラルネットワークの正確な電力系列表現を構築する。
幅にかかわらず、勾配降下によって生成されたトレーニングシーケンスは、正規化された逐次学習によって正確に複製可能であることを証明した。
論文 参考訳(メタデータ) (2023-02-01T03:18:07Z) - Neural Networks with Sparse Activation Induced by Large Bias: Tighter Analysis with Bias-Generalized NTK [86.45209429863858]
ニューラル・タンジェント・カーネル(NTK)における一層ReLUネットワークのトレーニングについて検討した。
我々は、ニューラルネットワークが、テクティトビア一般化NTKと呼ばれる異なる制限カーネルを持っていることを示した。
ニューラルネットの様々な特性をこの新しいカーネルで研究する。
論文 参考訳(メタデータ) (2023-01-01T02:11:39Z) - Extrapolation and Spectral Bias of Neural Nets with Hadamard Product: a
Polynomial Net Study [55.12108376616355]
NTKの研究は典型的なニューラルネットワークアーキテクチャに特化しているが、アダマール製品(NNs-Hp)を用いたニューラルネットワークには不完全である。
本研究では,ニューラルネットワークの特別なクラスであるNNs-Hpに対する有限幅Kの定式化を導出する。
我々は,カーネル回帰予測器と関連するNTKとの等価性を証明し,NTKの適用範囲を拡大する。
論文 参考訳(メタデータ) (2022-09-16T06:36:06Z) - Finite Versus Infinite Neural Networks: an Empirical Study [69.07049353209463]
カーネルメソッドは、完全に接続された有限幅ネットワークより優れている。
中心とアンサンブルの有限ネットワークは後続のばらつきを減らした。
重みの減衰と大きな学習率の使用は、有限ネットワークと無限ネットワークの対応を破る。
論文 参考訳(メタデータ) (2020-07-31T01:57:47Z) - Avoiding Kernel Fixed Points: Computing with ELU and GELU Infinite
Networks [12.692279981822011]
指数線型単位(ELU)とガウス誤差線形単位(GELU)を持つ多層パーセプトロンの共分散関数を導出する。
我々は、幅広い活性化関数に対応する繰り返しカーネルの固定点ダイナミクスを解析する。
これまで研究されてきたニューラルネットワークカーネルとは異なり、これらの新しいカーネルは非自明な固定点ダイナミクスを示す。
論文 参考訳(メタデータ) (2020-02-20T01:25:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。