論文の概要: Novel Kernel Models and Exact Representor Theory for Neural Networks Beyond the Over-Parameterized Regime
- arxiv url: http://arxiv.org/abs/2405.15254v1
- Date: Fri, 24 May 2024 06:30:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-27 16:00:17.642213
- Title: Novel Kernel Models and Exact Representor Theory for Neural Networks Beyond the Over-Parameterized Regime
- Title(参考訳): オーバーパラメータ化レジームを超えたニューラルネットの新しいカーネルモデルと特殊表現理論
- Authors: Alistair Shilton, Sunil Gupta, Santu Rana, Svetha Venkatesh,
- Abstract要約: 本稿では、ニューラルネットワークの2つのモデルと、任意の幅、深さ、トポロジーのニューラルネットワークに適用可能なトレーニングについて述べる。
また、局所外在性神経核(LeNK)の観点から、非正規化勾配降下を伴う階層型ニューラルネットワークトレーニングのための正確な表現子理論を提示する。
この表現論は、ニューラルネットワークトレーニングにおける高次統計学の役割と、ニューラルネットワークのカーネルモデルにおけるカーネル進化の影響について洞察を与える。
- 参考スコア(独自算出の注目度): 52.00917519626559
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents two models of neural-networks and their training applicable to neural networks of arbitrary width, depth and topology, assuming only finite-energy neural activations; and a novel representor theory for neural networks in terms of a matrix-valued kernel. The first model is exact (un-approximated) and global, casting the neural network as an elements in a reproducing kernel Banach space (RKBS); we use this model to provide tight bounds on Rademacher complexity. The second model is exact and local, casting the change in neural network function resulting from a bounded change in weights and biases (ie. a training step) in reproducing kernel Hilbert space (RKHS) in terms of a local-intrinsic neural kernel (LiNK). This local model provides insight into model adaptation through tight bounds on Rademacher complexity of network adaptation. We also prove that the neural tangent kernel (NTK) is a first-order approximation of the LiNK kernel. Finally, and noting that the LiNK does not provide a representor theory for technical reasons, we present an exact novel representor theory for layer-wise neural network training with unregularized gradient descent in terms of a local-extrinsic neural kernel (LeNK). This representor theory gives insight into the role of higher-order statistics in neural network training and the effect of kernel evolution in neural-network kernel models. Throughout the paper (a) feedforward ReLU networks and (b) residual networks (ResNet) are used as illustrative examples.
- Abstract(参考訳): 本稿では、有限エネルギーのニューラルアクティベーションのみを仮定して、任意の幅、深さ、トポロジーのニューラルネットワークに適用可能な2つのニューラルネットワークモデルと、行列値カーネルによるニューラルネットワークの表現論について述べる。
最初のモデルは正確で(近似されていない)グローバルであり、ニューラルネットワークを再生カーネルバナッハ空間(RKBS)の要素としてキャストする。
第2のモデルは正確かつ局所的であり、局所内在性神経核(LiNK)の観点で、カーネルヒルベルト空間(RKHS)を再現する際の重みとバイアス(トレーニングステップ)の有界変化に起因するニューラルネットワーク機能の変化をキャストする。
この局所モデルは、ネットワーク適応のラデマッハ複雑性の厳密な境界によるモデル適応に関する洞察を与える。
また、ニューラルネットワークカーネル(NTK)がLiNKカーネルの1次近似であることを証明した。
最後に、技術的理由からLiNKが表現子理論を提供していないことに留意し、局所外在性神経核(LeNK)の観点から、非正規化勾配降下を伴う階層型ニューラルネットワークトレーニングのための正確な表現子理論を提案する。
この表現論は、ニューラルネットワークトレーニングにおける高次統計学の役割と、ニューラルネットワークのカーネルモデルにおけるカーネル進化の影響について洞察を与える。
紙の至る所
(a)フィードフォワードReLUネットワークおよび
(b)残差ネットワーク(ResNet)を例に挙げる。
関連論文リスト
- A Survey on Statistical Theory of Deep Learning: Approximation, Training Dynamics, and Generative Models [13.283281356356161]
本稿では3つの観点から,ニューラルネットワークの統計理論に関する文献をレビューする。
ニューラルネットワークの過剰なリスクに関する調査結果をレビューする。
ニューラルネットワークが、目に見えないデータでうまく一般化できるソリューションを見つける方法に答えようとする論文」をレビューする。
論文 参考訳(メタデータ) (2024-01-14T02:30:19Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - Gradient Descent in Neural Networks as Sequential Learning in RKBS [63.011641517977644]
初期重みの有限近傍にニューラルネットワークの正確な電力系列表現を構築する。
幅にかかわらず、勾配降下によって生成されたトレーニングシーケンスは、正規化された逐次学習によって正確に複製可能であることを証明した。
論文 参考訳(メタデータ) (2023-02-01T03:18:07Z) - Extrapolation and Spectral Bias of Neural Nets with Hadamard Product: a
Polynomial Net Study [55.12108376616355]
NTKの研究は典型的なニューラルネットワークアーキテクチャに特化しているが、アダマール製品(NNs-Hp)を用いたニューラルネットワークには不完全である。
本研究では,ニューラルネットワークの特別なクラスであるNNs-Hpに対する有限幅Kの定式化を導出する。
我々は,カーネル回帰予測器と関連するNTKとの等価性を証明し,NTKの適用範囲を拡大する。
論文 参考訳(メタデータ) (2022-09-16T06:36:06Z) - Why Quantization Improves Generalization: NTK of Binary Weight Neural
Networks [33.08636537654596]
ニューラルネットワークにおける二分重みを、ラウンドリングの下でのランダム変数とみなし、ニューラルネットワークの異なる層上での分布伝搬について検討する。
本研究では,連続パラメータとスムーズなアクティベーション関数を持つニューラルネットワークである分布伝搬を近似する準ニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2022-06-13T06:11:21Z) - A Kernel-Expanded Stochastic Neural Network [10.837308632004644]
ディープニューラルネットワークは、トレーニングにおいて、しばしばローカルな最小限に閉じ込められる。
新しいカーネル拡張ニューラルネットワーク(K-StoNet)モデルは、潜在変数モデルとしてネットワークを再構成する。
モデルは命令正規化最適化(IRO)アルゴリズムを用いて容易に訓練することができる。
論文 参考訳(メタデータ) (2022-01-14T06:42:42Z) - Deep Kronecker neural networks: A general framework for neural networks
with adaptive activation functions [4.932130498861987]
我々は,適応的アクティベーション機能を持つニューラルネットワークの汎用フレームワークとして,新しいタイプのニューラルネットワークKronecker Neural Network(KNN)を提案する。
適切な条件下では、KNNはフィードフォワードネットワークによる損失よりも早く損失を減少させる。
論文 参考訳(メタデータ) (2021-05-20T04:54:57Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
本稿では、オーバーパラメータ化ディープニューラルネットワーク(DNN)のための新しい平均場フレームワークを提案する。
このフレームワークでは、DNNは連続的な極限におけるその特徴に対する確率測度と関数によって表現される。
本稿では、標準DNNとResidual Network(Res-Net)アーキテクチャを通してフレームワークを説明する。
論文 参考訳(メタデータ) (2020-07-03T01:37:16Z) - A Generalized Neural Tangent Kernel Analysis for Two-layer Neural
Networks [87.23360438947114]
重み劣化を伴う雑音勾配降下は依然として「カーネル様」の挙動を示すことを示す。
これは、トレーニング損失が一定の精度まで線形に収束することを意味する。
また,重み劣化を伴う雑音勾配勾配勾配で学習した2層ニューラルネットワークに対して,新しい一般化誤差を確立する。
論文 参考訳(メタデータ) (2020-02-10T18:56:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。