論文の概要: ViFusionTST: Deep Fusion of Time-Series Image Representations from Load Signals for Early Bed-Exit Prediction
- arxiv url: http://arxiv.org/abs/2506.22498v1
- Date: Wed, 25 Jun 2025 06:30:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-01 21:27:53.421863
- Title: ViFusionTST: Deep Fusion of Time-Series Image Representations from Load Signals for Early Bed-Exit Prediction
- Title(参考訳): ViFusionTST:初期ベッド出射予測のための負荷信号からの時系列画像の深部融合
- Authors: Hao Liu, Yu Hu, Rakiba Rayhana, Ling Bai, Zheng Liu,
- Abstract要約: ベッド関連滝は、病院や長期医療施設で怪我の主な原因となっている。
本研究は, ベッド脚下に装着した4つの低コスト負荷セルを用いて, 早期のベッド出口意図を予測できることを示す。
ラインプロットとテクスチャマップを並列に処理するデュアルストリームスウィントランスであるViFusionTSTを導入する。
- 参考スコア(独自算出の注目度): 9.121814173351094
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bed-related falls remain a leading source of injury in hospitals and long-term-care facilities, yet many commercial alarms trigger only after a patient has already left the bed. We show that early bed-exit intent can be predicted using only four low-cost load cells mounted under the bed legs. The resulting load signals are first converted into a compact set of complementary images: an RGB line plot that preserves raw waveforms and three texture maps - recurrence plot, Markov transition field, and Gramian angular field - that expose higher-order dynamics. We introduce ViFusionTST, a dual-stream Swin Transformer that processes the line plot and texture maps in parallel and fuses them through cross-attention to learn data-driven modality weights. To provide a realistic benchmark, we collected six months of continuous data from 95 beds in a long-term-care facility. On this real-world dataset ViFusionTST reaches an accuracy of 0.885 and an F1 score of 0.794, surpassing recent 1D and 2D time-series baselines across F1, recall, accuracy, and AUPRC. The results demonstrate that image-based fusion of load-sensor signals for time series classification is a practical and effective solution for real-time, privacy-preserving fall prevention.
- Abstract(参考訳): ベッド関連の転倒は、病院や長期医療施設で重傷を負う原因となっているが、すでに患者がベッドを離れた後のみ、多くの商業的アラームが引き起こされる。
本研究は, ベッド脚下に装着した4つの低コスト負荷セルを用いて, 早期のベッド出口意図を予測できることを示す。
RGB線プロットは生の波形を保存し、3つのテクスチャマップ(繰り返しプロット、マルコフ遷移場、グラミアン角場)は高次ダイナミクスを露呈する。
本稿では,2ストリームスウィン変換器であるViFusionTSTを導入し,線プロットとテクスチャマップを並列に処理し,データ駆動のモダリティ重みを学習する。
現実的なベンチマークとして,長期医療施設の95床から6ヶ月の連続データを収集した。
この実世界のデータセットでは、ViFusionTSTは0.885の精度に達し、F1スコアは0.794となり、F1、リコール、精度、AUPRCをまたいだ最近の1Dと2Dの時系列ベースラインを上回っている。
その結果,時系列分類のための画像に基づく負荷センサ信号の融合は,リアルタイム・プライバシ保護型転倒防止のための実用的で効果的なソリューションであることが示唆された。
関連論文リスト
- MobileNetV2: A lightweight classification model for home-based sleep apnea screening [3.463585190363689]
本研究は、心電図(ECG)と呼吸信号から抽出した特徴を早期OSAスクリーニングに利用した、新しい軽量ニューラルネットワークモデルを提案する。
ECG信号は睡眠段階を予測するための特徴スペクトログラムを生成するのに使用され、呼吸信号は睡眠関連呼吸異常を検出するために用いられる。
これらの予測を統合することで、AHI(apnea-hypopnea index)を精度良く算出し、OSAの正確な診断を容易にする。
論文 参考訳(メタデータ) (2024-12-28T01:37:25Z) - Future frame prediction in chest cine MR imaging using the PCA respiratory motion model and dynamically trained recurrent neural networks [0.0]
肺放射線治療システムは、推定腫瘍位置の不確実性や健康な組織の高照射を引き起こす遅延を受ける。
この研究は、オンライン学習アルゴリズムで訓練されたRNNを用いて、胸部ダイナミックMRIシーケンスの将来のフレーム予測に対処し、その遅延を補償する。
論文 参考訳(メタデータ) (2024-10-08T10:21:43Z) - Guided Score identity Distillation for Data-Free One-Step Text-to-Image Generation [62.30570286073223]
拡散に基づくテキスト・画像生成モデルは、テキスト記述と整合した画像を生成する能力を実証している。
本研究では, 実データにアクセスすることなく, 事前学習した拡散モデルの効率的な蒸留を可能にする, データフリーガイド蒸留法を提案する。
データフリー蒸留法は, 1ステップ生成装置で生成した合成画像のみをトレーニングすることにより, FIDとCLIPのスコアを急速に向上させ, 競争力のあるCLIPスコアを維持しつつ, 最先端のFID性能を実現する。
論文 参考訳(メタデータ) (2024-06-03T17:44:11Z) - Coordinate Transformer: Achieving Single-stage Multi-person Mesh
Recovery from Videos [91.44553585470688]
ビデオから複数人の3Dメッシュを回収することは、バーチャルリアリティーや理学療法などにおけるグループ行動の自動認識に向けた重要な第一歩である。
本稿では,複数人物の時空間関係を直接モデル化し,同時にエンドツーエンドでマルチ・メッシュ・リカバリを行うコーディネート・トランスフォーマーを提案する。
3DPWデータセットの実験では、CoordFormerが最先端の精度を大幅に向上し、MPJPE、PAMPJPE、PVEの計測値でそれぞれ4.2%、8.8%、そして4.7%を上回った。
論文 参考訳(メタデータ) (2023-08-20T18:23:07Z) - A CNN-Transformer Deep Learning Model for Real-time Sleep Stage
Classification in an Energy-Constrained Wireless Device [2.5672176409865686]
本稿では,単一チャネル脳波データに基づく自動睡眠ステージ分類のためのディープラーニング(DL)モデルを提案する。
このモデルは、ローカル処理によるリアルタイム操作のために、エネルギーとメモリ制限されたデバイス上で動作するように設計された。
我々は、Arduino Nano 33 BLEボード上で、提案モデルの小型版をテストし、完全に機能し、精度が高かった。
論文 参考訳(メタデータ) (2022-11-20T16:22:30Z) - GLEAM: Greedy Learning for Large-Scale Accelerated MRI Reconstruction [50.248694764703714]
アンロールされたニューラルネットワークは、最近最先端の加速MRI再構成を達成した。
これらのネットワークは、物理ベースの一貫性とニューラルネットワークベースの正規化を交互に組み合わせることで、反復最適化アルゴリズムをアンロールする。
我々は,高次元画像設定のための効率的なトレーニング戦略である加速度MRI再構成のためのグレディ・ラーニングを提案する。
論文 参考訳(メタデータ) (2022-07-18T06:01:29Z) - Inertial Hallucinations -- When Wearable Inertial Devices Start Seeing
Things [82.15959827765325]
環境支援型生活(AAL)のためのマルチモーダルセンサフュージョンの新しいアプローチを提案する。
我々は、標準マルチモーダルアプローチの2つの大きな欠点、限られた範囲のカバレッジ、信頼性の低下に対処する。
我々の新しいフレームワークは、三重項学習によるモダリティ幻覚の概念を融合させ、異なるモダリティを持つモデルを訓練し、推論時に欠落したセンサーに対処する。
論文 参考訳(メタデータ) (2022-07-14T10:04:18Z) - Ensemble of Convolution Neural Networks on Heterogeneous Signals for
Sleep Stage Scoring [63.30661835412352]
本稿では,脳波以外の追加信号の利用の利便性について検討し,比較する。
最も優れたモデルである深部分離畳み込みニューラルネットワークのアンサンブルは86.06%の精度を達成した。
論文 参考訳(メタデータ) (2021-07-23T06:37:38Z) - Convolutional Neural Networks for Sleep Stage Scoring on a Two-Channel
EEG Signal [63.18666008322476]
睡眠障害は、世界中の主要な病気の1つです。
専門家が使用する基本的なツールはPolysomnogramで、睡眠中に記録された様々な信号の集合である。
専門家は、標準的なガイドラインの1つに従って異なる信号を採点する必要があります。
論文 参考訳(メタデータ) (2021-03-30T09:59:56Z) - MRNet: a Multi-scale Residual Network for EEG-based Sleep Staging [5.141687309207561]
マルチスケール機能融合モデルと逐次補正アルゴリズムを統合し,データ駆動型スリープステージングのためのMRNetと呼ばれる新しいフレームワークを提案する。
EEG信号は、深い機能の表現に影響を与えるネットワーク伝播におけるかなりの詳細な情報を失う。
実験結果は,提案手法の精度とf1得点の両方における競合性能を示す。
論文 参考訳(メタデータ) (2021-01-07T13:48:30Z) - Detection of Obstructive Sleep Apnoea Using Features Extracted from
Segmented Time-Series ECG Signals Using a One Dimensional Convolutional
Neural Network [0.19686770963118383]
本研究は,単チャンネル心電図(ECG)信号から得られた閉塞性睡眠時無呼吸症(OSA)の自動検出を目的とした1次元畳み込みニューラルネットワーク(1DCNN)モデルを提案する。
このモデルは、畳み込み、最大プール層と、隠蔽層とSoftMax出力からなる完全に接続された多層パーセプトロン(MLP)を用いて構成されている。
これは、モデルが高い精度でApnoeaの存在を識別できることを示している。
論文 参考訳(メタデータ) (2020-02-03T15:47:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。