論文の概要: FreeDNA: Endowing Domain Adaptation of Diffusion-Based Dense Prediction with Training-Free Domain Noise Alignment
- arxiv url: http://arxiv.org/abs/2506.22509v1
- Date: Thu, 26 Jun 2025 02:54:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-01 21:27:53.433717
- Title: FreeDNA: Endowing Domain Adaptation of Diffusion-Based Dense Prediction with Training-Free Domain Noise Alignment
- Title(参考訳): FreeDNA: 学習自由領域雑音アライメントを用いた拡散線量予測のドメイン適応
- Authors: Hang Xu, Jie Huang, Linjiang Huang, Dong Li, Yidi Liu, Feng Zhao,
- Abstract要約: 密接な予測タスクに対するドメイン適応(DA)は重要なトピックであり、未確認領域でテストすると、密接な予測モデルの性能が向上する。
本稿では,DA 機能を備えた DDP フレームワークのトレーニングフリー機構を提案する。
- 参考スコア(独自算出の注目度): 36.299436959665584
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Domain Adaptation(DA) for dense prediction tasks is an important topic, which enhances the dense prediction model's performance when tested on its unseen domain. Recently, with the development of Diffusion-based Dense Prediction (DDP) models, the exploration of DA designs tailored to this framework is worth exploring, since the diffusion model is effective in modeling the distribution transformation that comprises domain information. In this work, we propose a training-free mechanism for DDP frameworks, endowing them with DA capabilities. Our motivation arises from the observation that the exposure bias (e.g., noise statistics bias) in diffusion brings domain shift, and different domains in conditions of DDP models can also be effectively captured by the noise prediction statistics. Based on this, we propose a training-free Domain Noise Alignment (DNA) approach, which alleviates the variations of noise statistics to domain changes during the diffusion sampling process, thereby achieving domain adaptation. Specifically, when the source domain is available, we directly adopt the DNA method to achieve domain adaptation by aligning the noise statistics of the target domain with those of the source domain. For the more challenging source-free DA, inspired by the observation that regions closer to the source domain exhibit higher confidence meeting variations of sampling noise, we utilize the statistics from the high-confidence regions progressively to guide the noise statistic adjustment during the sampling process. Notably, our method demonstrates the effectiveness of enhancing the DA capability of DDP models across four common dense prediction tasks. Code is available at \href{https://github.com/xuhang07/FreeDNA}{https://github.com/xuhang07/FreeDNA}.
- Abstract(参考訳): 密接な予測タスクに対するドメイン適応(DA)は重要なトピックであり、未確認領域でテストすると、密接な予測モデルの性能が向上する。
近年,拡散型DDP(Diffusion-based Dense Prediction)モデルの開発により,拡散モデルがドメイン情報を含む分散変換のモデル化に有効であるため,このフレームワークに適したDA設計の探索に価値がある。
本研究では,DA機能を備えたDDPフレームワークの学習自由機構を提案する。
我々のモチベーションは拡散における露出バイアス(例えばノイズ統計バイアス)がドメインシフトをもたらし、DDPモデルの異なる領域もノイズ予測統計によって効果的に捉えることができるという観察から生じる。
そこで本研究では,拡散サンプリング過程における雑音統計量と領域変化量の変動を緩和し,ドメイン適応を実現するための,学習不要な領域雑音アライメント(DNA)アプローチを提案する。
具体的には、ソースドメインが利用可能であれば、ターゲットドメインのノイズ統計とソースドメインのノイズ統計を整合させて、ドメイン適応を実現するために、DNAメソッドを直接適用する。
ソース領域に近い領域ではサンプリングノイズの信頼性が向上していることに着想を得て,高信頼領域からの統計を段階的に利用してサンプリング過程におけるノイズ統計調整を指導する。
特に,本手法は,DDPモデルのDA性能を4つの共通密度予測タスクで向上させる効果を示す。
コードは \href{https://github.com/xuhang07/FreeDNA}{https://github.com/xuhang07/FreeDNA} で入手できる。
関連論文リスト
- Source-Free Domain Adaptation with Diffusion-Guided Source Data Generation [6.087274577167399]
本稿では、ソースフリードメイン適応(DM-SFDA)のための拡散モデルの一般化可能性を活用する新しいアプローチを提案する。
提案するDMSFDA法では,事前学習したテキスト・画像拡散モデルを微調整し,ソース・ドメイン・イメージを生成する。
私たちは、Office-31、Office-Home、VisDAなど、さまざまなデータセットにわたる包括的な実験を通じて、このアプローチを検証する。
論文 参考訳(メタデータ) (2024-02-07T14:56:13Z) - Transcending Domains through Text-to-Image Diffusion: A Source-Free
Approach to Domain Adaptation [6.649910168731417]
ドメイン適応(ドメイン適応、Domain Adaptation、DA)は、アノテートデータが不十分なターゲットドメインにおけるモデルの性能を高める方法である。
本研究では,対象領域のサンプルに基づいてトレーニングしたテキスト・ツー・イメージ拡散モデルを用いて,ソースデータを生成する新しいSFDAフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-02T23:38:17Z) - Unsupervised Domain Adaptation via Domain-Adaptive Diffusion [31.802163238282343]
非教師付きドメイン適応(UDA)は、ソースドメインとターゲットドメインの間に大きな分散不一致があるため、非常に難しい。
大規模なギャップをまたいでデータ分散を段階的に変換する能力を持つ拡散モデルに着想を得て,その課題に対処する拡散手法について検討する。
提案手法は, 広く使用されている3つのUDAデータセットに対して, 現在の最先端技術よりも大きなマージンを達成している。
論文 参考訳(メタデータ) (2023-08-26T14:28:18Z) - Divide to Adapt: Mitigating Confirmation Bias for Domain Adaptation of
Black-Box Predictors [94.78389703894042]
ドメイン適応(Domain Adaptation of Black-box Predictor、DABP)は、ソースドメインでトレーニングされたブラックボックス予測器によって管理されるラベルなしのターゲットドメイン上のモデルを学習することを目的としている。
ソースドメインデータと予測パラメータの両方にアクセスする必要はないため、標準ドメイン適応におけるデータのプライバシとポータビリティの問題に対処する。
本稿では,知識蒸留と雑音ラベル学習を一貫した枠組みに組み込む新しい手法BETAを提案する。
論文 参考訳(メタデータ) (2022-05-28T16:00:44Z) - Source-Free Domain Adaptation via Distribution Estimation [106.48277721860036]
ドメイン適応は、ラベル付きソースドメインから学んだ知識を、データ分散が異なるラベル付きターゲットドメインに転送することを目的としています。
近年,ソースフリードメイン適応 (Source-Free Domain Adaptation, SFDA) が注目されている。
本研究では,SFDA-DEと呼ばれる新しいフレームワークを提案し,ソース分布推定によるSFDAタスクに対処する。
論文 参考訳(メタデータ) (2022-04-24T12:22:19Z) - Frequency Spectrum Augmentation Consistency for Domain Adaptive Object
Detection [107.52026281057343]
周波数スペクトル拡張整合(FSAC)フレームワークを4種類の低周波フィルタで構成する。
最初の段階では、オリジナルおよび拡張されたソースデータを全て利用して、オブジェクト検出器を訓練する。
第2段階では、予測一貫性のための自己学習を行うために、擬似ラベル付き拡張現実とターゲットデータを採用する。
論文 参考訳(メタデータ) (2021-12-16T04:07:01Z) - A Variational Bayesian Approach to Learning Latent Variables for
Acoustic Knowledge Transfer [55.20627066525205]
本稿では,ディープニューラルネットワーク(DNN)モデルにおける潜伏変数の分布を学習するための変分ベイズ(VB)アプローチを提案する。
我々の提案するVBアプローチは,ターゲットデバイスにおいて良好な改善が得られ,しかも,13の最先端知識伝達アルゴリズムを一貫して上回っている。
論文 参考訳(メタデータ) (2021-10-16T15:54:01Z) - Gradual Domain Adaptation via Self-Training of Auxiliary Models [50.63206102072175]
ソースとターゲットドメイン間のギャップを増やすことで、ドメイン適応はより難しくなります。
中間領域のモデルを学習する補助モデル(AuxSelfTrain)の自己学習を提案する。
教師なしおよび半教師付きドメイン適応のベンチマークデータセットの実験は、その有効性を検証する。
論文 参考訳(メタデータ) (2021-06-18T03:15:25Z) - Learning Calibrated Uncertainties for Domain Shift: A Distributionally
Robust Learning Approach [150.8920602230832]
ドメインシフトの下で校正された不確実性を学習するためのフレームワークを提案する。
特に、密度比推定は、ターゲット(テスト)サンプルの近さをソース(トレーニング)分布に反映する。
提案手法は下流タスクに有利な校正不確実性を生成する。
論文 参考訳(メタデータ) (2020-10-08T02:10:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。