論文の概要: In-context learning for the classification of manipulation techniques in phishing emails
- arxiv url: http://arxiv.org/abs/2506.22515v1
- Date: Thu, 26 Jun 2025 08:07:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-01 21:27:53.439019
- Title: In-context learning for the classification of manipulation techniques in phishing emails
- Title(参考訳): フィッシングメールにおける操作技法の分類のための文脈内学習
- Authors: Antony Dalmiere, Guillaume Auriol, Vincent Nicomette, Pascal Marchand,
- Abstract要約: 本研究では,Large Language Model (LLM) In-Context Learning (ICL) を用いて,40の操作技法の分類に基づくフィッシングメールのきめ細かい分類を行う。
このアプローチは、有望な精度0.76で有望なテクニックを効果的に識別する。
- 参考スコア(独自算出の注目度): 0.4034513177824024
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traditional phishing detection often overlooks psychological manipulation. This study investigates using Large Language Model (LLM) In-Context Learning (ICL) for fine-grained classification of phishing emails based on a taxonomy of 40 manipulation techniques. Using few-shot examples with GPT-4o-mini on real-world French phishing emails (SignalSpam), we evaluated performance against a human-annotated test set (100 emails). The approach effectively identifies prevalent techniques (e.g., Baiting, Curiosity Appeal, Request For Minor Favor) with a promising accuracy of 0.76. This work demonstrates ICL's potential for nuanced phishing analysis and provides insights into attacker strategies.
- Abstract(参考訳): 伝統的なフィッシング検出はしばしば心理的操作を見落としている。
本研究では,Large Language Model (LLM) In-Context Learning (ICL) を用いて,40の操作技法の分類に基づくフィッシングメールのきめ細かい分類を行う。
実世界のフレンチフィッシングメール(SignalSpam)でGPT-4o-miniを使用した少数の例を用いて,人手によるテストセット(100メール)のパフォーマンスを評価した。
このアプローチは、一般的なテクニック(例えば、Baiting、Curiosity Appeal、Request for Minor Favor)を0.76の有望な精度で効果的に識別する。
この研究は、ICLのニュアンスドフィッシング分析の可能性を示し、アタッカー戦略に関する洞察を提供する。
関連論文リスト
- LLM-Powered Intent-Based Categorization of Phishing Emails [0.0]
本稿では,Large Language Models (LLMs) の実践的可能性について検討し,その意図に焦点をあててフィッシングメールを検出する。
LLMによって運用されている意図型分類を導入し、メールを異なるカテゴリに分類し、行動可能な脅威情報を生成する。
以上の結果から,既存のLCMではフィッシングメールの検出と分類が可能であることが示唆された。
論文 参考訳(メタデータ) (2025-06-17T09:21:55Z) - APOLLO: A GPT-based tool to detect phishing emails and generate explanations that warn users [2.3618982787621]
大規模言語モデル(LLM)は、様々なドメインでテキスト処理を約束する。
我々は,OpenAIのGPT-4oに基づくツールであるAPOLLOを紹介し,フィッシングメールを検出し,説明メッセージを生成する。
また,20名の被験者を対象に,フィッシング警告として提示された4つの説明を比較検討した。
論文 参考訳(メタデータ) (2024-10-10T14:53:39Z) - Evaluating LLM-based Personal Information Extraction and Countermeasures [63.91918057570824]
大規模言語モデル(LLM)に基づく個人情報抽出をベンチマークすることができる。
LLMは攻撃者によって誤用され、個人プロファイルから様々な個人情報を正確に抽出する。
プロンプトインジェクションは強力なLDMベースの攻撃に対して防御し、攻撃をより効果的でない従来の攻撃に還元する。
論文 参考訳(メタデータ) (2024-08-14T04:49:30Z) - Evaluating the Efficacy of Large Language Models in Identifying Phishing Attempts [2.6012482282204004]
何十年にもわたるサイバー犯罪戦術であるフィッシングは、今日のデジタル世界において大きな脅威となっている。
本稿では,15大言語モデル (LLM) がフィッシング手法の検出に有効であることを示す。
論文 参考訳(メタデータ) (2024-04-23T19:55:18Z) - An Innovative Information Theory-based Approach to Tackle and Enhance The Transparency in Phishing Detection [23.962076093344166]
フィッシングアタックローカライゼーションのための革新的な深層学習手法を提案する。
本手法は,メールデータの脆弱性を予測するだけでなく,最も重要なフィッシング関連情報を自動的に学習し,発見する。
論文 参考訳(メタデータ) (2024-02-27T00:03:07Z) - Prompted Contextual Vectors for Spear-Phishing Detection [41.26408609344205]
スパイアフィッシング攻撃は重大なセキュリティ上の課題を示す。
本稿では,新しい文書ベクトル化手法に基づく検出手法を提案する。
提案手法は, LLM生成したスピアフィッシングメールの識別において, 91%のF1スコアを達成する。
論文 参考訳(メタデータ) (2024-02-13T09:12:55Z) - Profiler: Profile-Based Model to Detect Phishing Emails [15.109679047753355]
本稿では,攻撃者がメールに適応して検出を回避できる可能性を低減するために,メールの多次元リスク評価を提案する。
本研究では,(1)脅威レベル,(2)認知的操作,(3)電子メールタイプを分析する3つのモデルを含むリスクアセスメントフレームワークを開発する。
プロファイラは、MLアプローチと併用して、誤分類を減らしたり、トレーニング段階で大規模な電子メールデータセットのラベル付けとして使用することができる。
論文 参考訳(メタデータ) (2022-08-18T10:01:55Z) - Deep convolutional forest: a dynamic deep ensemble approach for spam
detection in text [219.15486286590016]
本稿では,スパム検出のための動的深層アンサンブルモデルを提案する。
その結果、このモデルは高い精度、リコール、f1スコア、98.38%の精度を達成した。
論文 参考訳(メタデータ) (2021-10-10T17:19:37Z) - Detection of Adversarial Supports in Few-shot Classifiers Using Feature
Preserving Autoencoders and Self-Similarity [89.26308254637702]
敵対的なサポートセットを強調するための検出戦略を提案する。
我々は,特徴保存型オートエンコーダフィルタリングと,この検出を行うサポートセットの自己相似性の概念を利用する。
提案手法は攻撃非依存であり, 最善の知識まで, 数発分類器の検出を探索する最初の方法である。
論文 参考訳(メタデータ) (2020-12-09T14:13:41Z) - Robust and Verifiable Information Embedding Attacks to Deep Neural
Networks via Error-Correcting Codes [81.85509264573948]
ディープラーニングの時代、ユーザは、サードパーティの機械学習ツールを使用して、ディープニューラルネットワーク(DNN)分類器をトレーニングすることが多い。
情報埋め込み攻撃では、攻撃者は悪意のあるサードパーティの機械学習ツールを提供する。
本研究では,一般的なポストプロセッシング手法に対して検証可能で堅牢な情報埋め込み攻撃を設計することを目的とする。
論文 参考訳(メタデータ) (2020-10-26T17:42:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。