Hierarchical Modeling and Architecture Optimization: Review and Unified Framework
- URL: http://arxiv.org/abs/2506.22621v1
- Date: Fri, 27 Jun 2025 20:38:57 GMT
- Title: Hierarchical Modeling and Architecture Optimization: Review and Unified Framework
- Authors: Paul Saves, Edward Hallé-Hannan, Jasper Bussemaker, Youssef Diouane, Nathalie Bartoli,
- Abstract summary: This paper reviews literature on structured input spaces and proposes a unified framework that generalizes existing approaches.<n>A variable is described as meta if its value governs the presence of other decreed variables, enabling the modeling of conditional and hierarchical structures.
- Score: 0.6291443816903801
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Simulation-based problems involving mixed-variable inputs frequently feature domains that are hierarchical, conditional, heterogeneous, or tree-structured. These characteristics pose challenges for data representation, modeling, and optimization. This paper reviews extensive literature on these structured input spaces and proposes a unified framework that generalizes existing approaches. In this framework, input variables may be continuous, integer, or categorical. A variable is described as meta if its value governs the presence of other decreed variables, enabling the modeling of conditional and hierarchical structures. We further introduce the concept of partially-decreed variables, whose activation depends on contextual conditions. To capture these inter-variable hierarchical relationships, we introduce design space graphs, combining principles from feature modeling and graph theory. This allows the definition of general hierarchical domains suitable for describing complex system architectures. The framework supports the use of surrogate models over such domains and integrates hierarchical kernels and distances for efficient modeling and optimization. The proposed methods are implemented in the open-source Surrogate Modeling Toolbox (SMT 2.0), and their capabilities are demonstrated through applications in Bayesian optimization for complex system design, including a case study in green aircraft architecture.
Related papers
- Assemble Your Crew: Automatic Multi-agent Communication Topology Design via Autoregressive Graph Generation [72.44384066166147]
Multi-agent systems (MAS) based on large language models (LLMs) have emerged as a powerful solution for dealing with complex problems across diverse domains.<n>Existing approaches are fundamentally constrained by their reliance on a template graph modification paradigm with a predefined set of agents and hard-coded interaction structures.<n>We propose ARG-Designer, a novel autoregressive model that operationalizes this paradigm by constructing the collaboration graph from scratch.
arXiv Detail & Related papers (2025-07-24T09:17:41Z) - A unified framework on the universal approximation of transformer-type architectures [16.762119652883204]
We investigate the universal approximation property (UAP) of transformer-type architectures.<n>Our work identifies token distinguishability as a fundamental requirement for UAP.<n>We demonstrate the applicability of our framework by proving UAP for transformers with various attention mechanisms.
arXiv Detail & Related papers (2025-06-30T06:50:39Z) - Structural Similarity-Inspired Unfolding for Lightweight Image Super-Resolution [88.20464308588889]
We propose a Structural Similarity-Inspired Unfolding (SSIU) method for efficient image SR.<n>This method is designed through unfolding an SR optimization function constrained by structural similarity.<n>Our model outperforms current state-of-the-art models, boasting lower parameter counts and reduced memory consumption.
arXiv Detail & Related papers (2025-06-13T14:29:40Z) - Comparative Analysis of AI Agent Architectures for Entity Relationship Classification [1.6887793771613606]
In this study, we conduct a comparative analysis of three distinct AI agent architectures to perform relation classification.<n>The agentic architectures explored include (1) reflective self-evaluation, (2) hierarchical task decomposition, and (3) a novel multi-agent dynamic example generation mechanism.<n>Our experiments demonstrate that multi-agent coordination consistently outperforms standard few-shot prompting.
arXiv Detail & Related papers (2025-06-03T04:19:47Z) - Persistent Topological Features in Large Language Models [0.6597195879147556]
We introduce topological descriptors that measure how topological features, $p$-dimensional holes, persist and evolve throughout the layers.<n>This offers a statistical perspective on how prompts are rearranged and their relative positions changed in the representation space.<n>As a showcase application, we use zigzag persistence to establish a criterion for layer pruning, achieving results comparable to state-of-the-art methods.
arXiv Detail & Related papers (2024-10-14T19:46:23Z) - Algebraic Positional Encodings [7.0975366862235445]
We introduce a novel positional encoding strategy for Transformer-style models, addressing the shortcomings of existing, often ad hoc, approaches.
We conduct a series of experiments to demonstrate the practical applicability of our approach.
Results suggest performance on par with or surpassing the current state-of-the-art.
arXiv Detail & Related papers (2023-12-26T13:17:25Z) - Neural Constraint Satisfaction: Hierarchical Abstraction for
Combinatorial Generalization in Object Rearrangement [75.9289887536165]
We present a hierarchical abstraction approach to uncover underlying entities.
We show how to learn a correspondence between intervening on states of entities in the agent's model and acting on objects in the environment.
We use this correspondence to develop a method for control that generalizes to different numbers and configurations of objects.
arXiv Detail & Related papers (2023-03-20T18:19:36Z) - Slimmable Domain Adaptation [112.19652651687402]
We introduce a simple framework, Slimmable Domain Adaptation, to improve cross-domain generalization with a weight-sharing model bank.
Our framework surpasses other competing approaches by a very large margin on multiple benchmarks.
arXiv Detail & Related papers (2022-06-14T06:28:04Z) - Embedded-model flows: Combining the inductive biases of model-free deep
learning and explicit probabilistic modeling [8.405013085269976]
We propose embedded-model flows which alternate general-purpose transformations with structured layers that embed domain-specific inductive biases.
We demonstrate that EMFs can be used to induce desirable properties such as multimodality, hierarchical coupling and continuity.
In experiments, we show that this approach outperforms state-of-the-art methods in common structured inference problems.
arXiv Detail & Related papers (2021-10-12T14:12:16Z) - Redefining Neural Architecture Search of Heterogeneous Multi-Network
Models by Characterizing Variation Operators and Model Components [71.03032589756434]
We investigate the effect of different variation operators in a complex domain, that of multi-network heterogeneous neural models.
We characterize both the variation operators, according to their effect on the complexity and performance of the model; and the models, relying on diverse metrics which estimate the quality of the different parts composing it.
arXiv Detail & Related papers (2021-06-16T17:12:26Z) - Polynomial Networks in Deep Classifiers [55.90321402256631]
We cast the study of deep neural networks under a unifying framework.
Our framework provides insights on the inductive biases of each model.
The efficacy of the proposed models is evaluated on standard image and audio classification benchmarks.
arXiv Detail & Related papers (2021-04-16T06:41:20Z) - S2RMs: Spatially Structured Recurrent Modules [105.0377129434636]
We take a step towards exploiting dynamic structure that are capable of simultaneously exploiting both modular andtemporal structures.
We find our models to be robust to the number of available views and better capable of generalization to novel tasks without additional training.
arXiv Detail & Related papers (2020-07-13T17:44:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.